
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 7656

4. TITLE (and S&btitle) 5. TYPE OF REPORT & PERIOD COVERED

This is a final report on the
NRL MODIFIED VERSION OF CINDA-3G PROGRAM pooblem.

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) B. CONTRACT OR GRANT NUMBER(s)

Mary E. Gealy

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory None
Washington, D.C. 20375

I I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy August 22, 1974
Naval Research Laboratory 13. NUMBER OF PAGES

Washington, D.C. 20375 207
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) IS. SECURITY CLASS. (of thie report)

Unclassified

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

'9. KEY WORDS (Continue on reverse aide If neceesary end identify by block numbfr)

CINDA-3G program for CDC-3800
Numerical differencing analysis
Heat transfer

20. ABSTRACT (Continue on reverse ade if necessary end Identify by block number)

A programming manual has been prepared for the thermal analyzing program, CINDA. The
program's options offer the user a variety of methods for solution of thermal analog models
presented to it in a network format. The network representation of the thermal problem is
unique in that it has a one-to-one correspondence to both the physical model and the mathemati-
cal model. This analogy enables engineers quickly to construct mathematical models of complex

(Continued)

DD 1JAN73 1473 EDITION OF I NOV 65 IS OBSOLE
S/N 0102-014-6601 1

TE

i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

_LLIJRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

thermophysical problems and prepare them for program input. In addition, the program contains
numerous subroutines for handling interrelated complex phenomena such as sublimation; diffuse
radiation within enclosures; simultaneous, one-dimensional, incompressible fluid flow including
valving and transport delay effects; etc. It can handle all three types of heat transfer-conduction,
convection, and radiation. The optional combinations of these capabilities, in conjunction with
the model size allowable (4000 nodes on a 65k-core machine), make CINDA an extremely potent
analytical tool for-thermal systems analysis in the hands of a competent engineer analyst. Its uses
include determining temperatures of structures such as bridges, rockets, and buildings; finding
cooling requirements for electric circuits; and studying the thermal properties of adverse thermal
systems such as nuclear reactors and automobile engines.

The programs on pp. 104, 105, 106 are adaptations of similar programs published in "MITAS
User Information Manual (Martin Marietta Thermal Analyzer System)," CYBERNET
Publications Division, Control Data Corporation, Copyright 1972.

11 SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

I. INTRODUCTION 1

Background 1
Overview 1

II. DISCUSSION 2

Lumped-Parameter Representation 2
Basics of Finite Differencing 4
Iterative Techniques 6
Pseudo-Compute Sequence 8
Data Logistics 10
Order of Computation 11
Systems Programming 11

III. DATA INPUT REQUIREMENTS 13

Title Block 13
Node Data Block 14
Conductor Data Block 16
Constants Data Block 19
Array Data Block 20
Program Control 21
Execution Operations Block 23
Variables 1 Operations Block 25
Variables 2 Operations Block 26
Output Calls Operations Block 28
Parameter Runs 29
Store and Recall Problem Options 30
Data Printing Option 31

IV. ERROR MESSAGES 31

V. OPERATING SYSTEM DESCRIPTION 33

General 33
Preprocessor 35

VI. EXTERNAL PLOTTING PACKAGE 37

Data Set 37
Diagnostics 39

iii

VII. TAPE USAGE AND DECK SETUPS 39

CINDA Operating System 39
Plot Package 44

VIII. ALPHABETIC LISTING OF AVAILABLE
SUBROUTINES 48

Execution 50
Interpolation 57
Arithmetic 67
Output 83
Matrix 86
Special 99
Internal 108

ACKNOWLEDGMENTS 108

APPENDIX A - Sample Problem 1A 109

APPENDIX B - Sample Problem 1B 161

iv

NRL MODIFIED VERSION OF CINDA-3G PROGRAM

I. INTRODUCTION

Background

When it was recognized that a thermal analyzing system was needed at the Naval
Research Laboratory, the Chrysler Numerical Differencing Analyzer for third-generation
computers (CINDA-3G)* was obtained for use on the CDC-3800 computer. CINDA-3G
was developed by the Thermodynamic Section of the Aerospace Physics Branch of the
Chrysler Corporation Space Division at NASA's Michoud Assembly Facility. A major
portion of this work was done as a NASA-funded project from the Manned Spacecraft
Center in Houston, Texas.

CINDA was programmed in FORTRAN V for the Univac 1108. Because of differ-
ences between the computers, modifications to the program were necessary before it
could be usable on the CDC-3800. The task of conversion required compensating for
compiler differences (FORTRAN V vs 3800 FORTRAN), rewriting some routines in
COMPASS, and in general, adapting CINDA to the Drum SCOPE system. Documenta-
tion supplied with the Univac version of CINDA was a most useful aid in the conversion
process. This NRL report represents the CDC-3800 version of CINDA-3G, and is partly
a rewrite of the original Chrysler document. While most of the sections have been only
slightly modified, the section on tape usage and deck setups is strictly applicable to
CDC-3800 software. The external plotting package in Section VI for the CALCOMP
plotter replaces plotting routines used by the Univac 1108 for the SC-4020.

Overview

This programming manual deals with the CINDA system in two general categories-
the logic and data needed in setting up the problem data deck, and the actual structure
of the operating system.

The logic in constructing a problem for CINDA involves developing a lumped-
parameter representation of the physical problem. This model simulates the elements of
heat transfer, and the user must supply the corresponding network data, which will be
used by one or more routines selected from a large subroutine library. The user must
determine which routines are needed and the order in which they are to be activated.
This information and the other related logic are entered in a modified FORTRAN
language. The major routines involved use various iterative techniques for solutions,
with the program-formed compute sequences minimizing the required operations.

Note: Manuscript submitted September 5, 1973.
*D.R. Lewis, J.D. Gaski, and L.R. Thompson, "Chrysler Improved Numerical Differencing Analyzer for

3rd Generation Computers," Technical Note TN-AP-67-287, Chrysler Corporation Space Division, New
Orleans, La., 1967.

1

MARY E. GEALY

CINDA is not merely a single execution program, but is an operating system in itself.
It consists of two software packages of its own (the preprocessor and subroutine library
file) and is also quite dependent on the computer's system software (at NRL, the CDC-
3800's Drum SCOPE system). This dependence is largely due to language and allocating
differences of FORTRAN compilers, as well as computer work size and assembly language
routines. The preprocessor reads and processes the two types of user data-the network
data and the logic data. From the former, its output is a binary data file, and from the
latter, it generates five FORTRAN subroutines which, when compiled, are referred to as
the processor. The processor makes user-requested calls to subroutines in the library file,
executing the binary data output from the preprocessor. The user's logic controls the
processor until the end of the job. For any particular problem the arrays in the processor
are dimensioned exactly as needed by the preprocessor. This feature, together with user-
controlled output, saves computer time and money.

II. DISCUSSION

Lumped-Parameter Representation

The key to utilizing a network-type analysis program lies in the users' ability to de-
velop a lumped-parameter representation of the physical problem. Once this is done,
superimposing the network mesh is a mechanical task at most and the numbering of the
network elements is simple although perhaps tedious. It might be said that the network
representation is a "crutch" for the engineer, but it does simplify the data logistics and
allow easy preparation of data input to the program. In addition, it allows the user to
identify uniquely any element in the network and modify its value or function during
the analysis as well as sense any potential or current flow in the network. Another fea-
ture of the network is that it has a one-to-one correspondence to the mathematical model
as well as the physical model.

Perhaps the most critical aspect of the lumped-parameter approach is determining
the lump size. There are methods for optimizing the lump size, but they usually involve
more analytical effort and computer time than the original analysis. One must also keep
in mind that for a transient problem, time is being lumped as well as space. Of prime
importance is what information is being sought from the analysis. If spot temperatures
are being sought, nodes must at least fall on the spots and not include much more physi-
cally than would be expected to exist at a relatively similar temperature. Nodes must
fall at end points when a temperature gradient is sought. Of necessity, lumping must be
fairly fine where isotherms are sought. Lumping should be coarse in areas of high ther-
mal conductivity. When nonlinear properties are being evaluated, the lumping should be
fine enough so that extreme gradients are not encountered. The lumping is also depend-
ent on the severity of the nonlinearity.

To reduce round-off error, the explicit stability criteria of the lump (the capacitance
value divided by the summation of conductor values into the node) should be held fairly
constant. The value C/XG is directly proportional to the square of the distance between
nodes. Although refining the lumped-parameter representation will yield more accurate
answers, halving the distance between nodes decreases the stability criteria by a factor of
four and increases the number of nodes by a factor of two, four, or eight depending
upon whether the problem is one, two, or three dimensional. For the explicit case,

2

NRL REPORT 7656

halving the distance between nodes increases the machine time for transient analysis by a
factor of 8, 16, or 32, respectively. The increase in solution time for the implicit methods
is somewhat less but proportional.

When lumping the time space, consideration must be given to the frequency of the
boundary conditions. A time step must not step over boundary excitation points or
they will be missed. Do not step over pulses; rather, rise and fall with them. Generally
the computation interval for the explicit methods is sufficiently small so that frequency
effects can be ignored. However, care must be exercised when specifying the time step
for implicit methods. If only a small portion of a transient analysis involves frequency
considerations, the time step used may be selectively restricted for that interval. By
setting the maximum time step allowed as a function of time, we may utilize an inter-
polation call to vary it accordingly.

One must also realize that the problem being solved is linearized over the time step.
Heating rate calculations are usually computed for a time point and then applied to a
time space. If the rates are nonlinear, a certain amount of error is introduced, partic-
ularly so with radiation. These nonlinear effects may cause almost any method of solu-
tion to diverge. A brute force method for forcing convergence is to limit the temperature
change allowed over the time space. Consideration of the factors mentioned above, cou-
pled with some experience in using the program, will aid the observant analyst in choosing
lump sizes that will yield answers of sufficient engineering accuracy with a reasonable
amount of computer time.

Figure 1 shows the lumped-parameter representation and network superposition of a
one-dimensional heat transfer problem.

QI GI T2 AIG2 T3 IG3 T4 *IG4 T5

T I 5

Fig. 1-One-dimensional network

The "node" points are centered within the lumps, and temperatures at the nodes are con-
sidered uniform throughout the lump. The capacitors hung from the nodes indicate the
ability of the lump to store thermal energy. Capacitance values are calculated as lump
volume times density times specific heat. The conductors (electrical symbol G) represent
the capability for transmitting thermal energy from one lump to another. Conductor
values for energy transmission through solids are calculated as thermal conductivity times
the energy cross-sectional flow area divided by path length (distance between nodes).
Conductor values for convective heat transfer are calculated as the convection coefficient
times the energy cross-sectional flow area. Conductors representing energy transfer by
radiation are usually indicated by crossed arrows over the conductor symbol. Radiation
transfer is nonlinear; it is proportional to the difference of the absolute temperatures
raised to the fourth power. Utilization of the Farenheit system allows easy automation
of this nonlinear transfer function by the program and reduces the radiation conductor
value to the product of the Stephan-Boltzmann constant times the surface area times the
net radiant interchange factor (script F).

3

MARY E. GEALY

Basics of Finite Differencing

The concept of network superposition on the lumped-parameter representation of a
physical system is easy to grasp. Describing the network to the program is also quite
straightforward. Having described a network to the program, what information have we
really supplied and what does the program do with it? Basically, we desire the solution
to a simultaneous set of partial differential equations of the diffusion type; i.e.,

_T a2 + a2 + a2
-= V2 T + S, V2 a 2 ay2 . (1)

That the diffusivity (a = k/pCp) may be temperature varying or nonlinear radiation trans-
fer occurring is immaterial at this point. Of importance is how Eq. (1) is finite differ-
enced and its relationship to the network and energy flow equations more commonly
utilized by the engineer. The partial of the T-state variable with respect to time is finite
differenced across the time space as follows:

aT T' T (2)
at At

where the prime indicates the new T value after passage of the At time step.

The right side of Eq. (1) could be written with T primed to indicate implicit "back-
ward" differencing or unprimed to indicate explicit "forward" differencing. The follow-
ing equation is illustrative of how "backward" and "forward" combinations may be
obtained.

aT = O(UV2T + S) + (1 - p)(U7V2T' + S'), Q < < 1 . (3)

Any value of 3 less than 1 yields an implicit set of equations which must be solved in a
simultaneous manner (more than one unknown exists in each equation). Any value of (
equal to or less than 1/2 yields an unconditionally stable set of equations or in other
words, any time step desired may be used. Values of I' greater than 1/2 invoke stability
criteria or limitations on the magnitude of the time step. A value of I' equal to 1/2
yields an unconditionally stable implicit set of equations commonly known as "forward-
backward" differencing or the Crank-Nicholson method. Various transformations or first
order integration applied to Eq. (1) generally yield an implicit set of equations similar to
Eq. (3) with (3 equal to 1/2. The following finite difference approach generally applies
to transformed equations.

Let us consider the right side of Eq. (3) with (3 1 and rewrite it as follows:

UV2 T +S - a (aT _ ar/+ a TaT_ W + faT aT) 4
Ax (ax- ax-+) -Ay (ay- ay+) Az (+S (4

The minus or plus signs on the first partial terms indicate that they are taken on the
negative or positive side, respectively, of the point under consideration and always in the

4

NRL REPORT 7656

same direction. If we consider three consecutive points (1, 2, and 3) ascending in the x
direction we can complete the finite difference of the x portion of Eq. (4) as follows:

a (8T2 _ 3T2 \
Ax ax- ax+

a -T1 - T2 + T3 - T2
Ax \ Ax- Ax+I (5)

Applying the above step to the y and z portions of Eq. (4) yields the common denomi-
nator of volume (V = Ax* Ay* Az). Using Eq. (3) with (= 1, finite differencing with
the steps used for Eqs. (3), (4), and (5), substituting oa = k/pCp, and multiplying both
sides by pVCp yield

At (To - To) = kA (T 1 - To) + Ax+ (T2 - To)

kAy kAy
+ Ay- (T3 - To) + Ay (T4 - To)Ay- ~AY+

+ kAz (T5 - T0) + A (T6 - TO) +Liz_ A 0 z+ 0) Q (6)

where Ax = Ay Az, Ay = Ax Az, Az = Ax Ay and Q = pVCpS.

x, y, and z correspond to the coordinates of Fig. 2a.

(a) (b)

Fig. 2-Network of a three-dimensional system

5

MARY E. GEALY

The numbering system corresponds to a three-dimensional network, shown in Fig. 2b.
It should be obvious that the network capacitance value is pVCp, that the G1 value is
kAx/Ax-, etc. Equation (6) may then be written as

Co(T- TO)/At = G1(T1 - To) + G2(T 2 - To) + G3 (T 3 - To) + G4(T4 - To)

+ G5 (T 5 - To) + G6 (T6 - To) + Q0 (7)

or in engineering terminology, the rate of change of temperature with respect to time is
proportional to the summation of heat flows into the node.

It should be noted that Fig. 2 is essentially superimposed on a lumped-parameter
cube of a physical system and is the network representation of Eq. (1). Since Eq. (7) is
written in explicit form, only one unknown (To) exists and all of the information neces-
sary for its solution is contained in the network description. If it had been formulated
implicitly, it would have to be solved in a simultaneous manner. No matter what method
of solution is requested of the program, the information necessary has been conveyed by
the network description. When an implicit set is used with (> 0, the energy flows based
on old temperatures are added to the Q term and the equations are then treated in the
same manner as for (= 0;

aV2 T + S = 0. (8)

The solution of Poisson's equation (8) is the solution utilized for steady state analy-
sis. It is extremely important because virtually all of the unconditionally stable implicit
methods reduce to it. If Eq. (7) had all the right side values primed and the left side
was subtracted from both sides, we could think of Co0 /At as a Go term and To (old)
would then become a boundary node. In a manner of speaking, the capacitor we look at
in three dimensions becomes a conductor in four dimensions. We could draw a four-
dimensional network, but since there is no feedback in time it is senseless to take more
than one time step at a time. However, various time-space transformations can be uti-
lized such that a one-dimensional "transient" yields the solution to a two-dimensional
steady state problem, etc. This is analogous to the "Particle in Cell" method developed
in the nuclear field for following shock-wave propagation.

Iterative Techniques

Now that we have discussed the correlation between the physical, network, and
mathematical models, let's investigate the commonality of the various methods of solu-
tion. By describing the network of Fig. 1 to the program, we have supplied it with five
temperatures, five capacitors, five sources (four not specified and therefore zero), four
conductors, and the adjoining node numbers of the conductors. An explicit formulation
such as Eq. (6) has only one unknown. Its solution is easily obtainable as long as any
associated stability criteria are continuously satisfied. A more interesting formulation
would be a set of implicit equations as follows:

6

NRL REPORT 7656

(Tr TT)C, /At = Q'_ + G, (T2- - Trr)

(T2 -T 2)C2 /At = Q2 + G 1(T -T) + G2(T3- T2)

(T3 - T3)C 3 /At = Q3 + G2 (T2-T3) + G3 (T4 -T3) (9)

(T4 -T 4)C4/At = Q' + G3(TT -) + G4(T5 -T4)

(T5 -T 5)C5 /At = Q5 + G4(T4 T5

If the above had been formulated as partly explicit and implicit, the known explicit por-
tion would have been calculated and added to the Q terms, then the (factor would have
been divided into the Q terms and multiplied by the At term.

If we divide the At term into the C terms and indicate this by priming C, we can
reformulate Eq. (9) as follows:

(C+ G1) T - Q1 + C1 T1 + G1 T2

(C2 + G, + G2)T2 = Q+ C2T2 + G1 Tl + G2 T3

(C3 + G2 + G3)T3 Q'3 + C3T3 + G2T2 + GTT2 (10)

(C4 +G3 + G4) T4 Q4 + C'T 4 + G3 T3 + G4 5

(C5 + G4) T5 =Q5 + C;T5 + G4 T4-

This equation can be generalized as

C!T + i GaTa + Q'i

1C + ZGa

where the subscript a indicates connection to adjoining nodes. A C' value of zero yields
the standard steady state equation, the conductor weighted mean of all the surrounding
nodes. We see here that the C' can be thought of as a conductor to the old temperature
value and therefore Eq. (11), although utilized to obtain transient solutions, can be con-
sidered as a steady state equation in four dimensions. By rewriting Eqs. (10) in the form
of Eq. (11) we are in a position to discuss iterative techniques. By assuming all old
values on the right hand side of Eq. (10), we could calculate a new set of temperatures
on the left which, although wrong, are closer to the correct answer. This single set of
calculations is termed an iteration. By replacing all of the old temperatures with those
just calculated, we can then perform another iteration. This process is called "block"
iteration. A faster method is to utilize only one location for each temperature. This way,
the newest temperature available is always utilized. This method is termed "successive
point" iteration and is generally 25% faster than "block" iteration. The iterative process
is continued a fixed (set by user) number of times or until the maximum absolute differ-
ence between the new and old temperature values is less than some prespecified value
(set by user).

7

MARY E. GEALY

Although the above operations are similar to a relaxation procedure, there is a slight
difference. We are performing a set of calculations in a fixed sequence. A relaxation
procedure would continuously seek the node with the maximum temperature difference
between old and new and calculate it. Programmingwise, as much work is required in
the seeking operation, which must be consecutive, as in the calculation. For this reason
it would be wasteful to code a true relaxation method.

In addition to the iterative approach, several solution subroutines utilize an accelera-
tion feature and/or a different convergence criteria. Once it can be determined that the
temperatures are approaching the steady state value, an extrapolation is applied in an
attempt to accelerate convergence. This convergence criterion is the maximum absolute
temperature change allowed between iterations. This criteria, however, is generally one
sided and any associated errors are accumulative. In order to obtain greater accuracy,
some subroutines are coded to perform an energy balance on the entire system (a type
of Green's function) and apply successively more severe convergence criteria until the
system energy balance (energy in minus energy out) is within some prespecified tolerance.

Pseudo-Compute Sequence

A set of simultaneous equations such as Eqs. (10) is quite often treated by matrix
methods and formulated as follows:

(12)[A] {T'} = {B},

where

-(C-' + Gj) 0

-G, (C2 + G1 + G2)

0 0

0 0

(C3 + G2 + G3)

-G3

0

-G3

(C4 + G3 + G4)

+ C3T3 -

The inverse of [A] is then calculated and the solution obtained by matrix multiplication;

8

0

0

0

0

0

{A} =

and

{T'} =

0

(C' + G4)_

+ ClT1 '

+ CT 222

Q11

Q'2

Q3

.Q4

IQz5

{B} =

(13)

T4 + C4'T4

+ C5T5 ,

NRL REPORT 7656

{T'} = [Al- 1 {B}. (14)

It should be noted that the one-dimensional problem has no more than three finite
values in any row or column of the coefficient matrix [A]. A three-dimensional problem
would generally have no more than seven finite values in any row or column. It is easy
to see that a 1000-node, three-dimensional problem would require one million data loca-
tions, of which approximately 993,000 would contain zero. The inverse might require
an additional one million data locations. Aside from exceeding computer core area, the
computer time required to calculate the inverse is proportional to the cube of the prob-
lem size, and large problems soon become uneconomical to solve.

The explicit and iterative implicit methods previously discussed are well suited for
optimizing the data storage area required. Note the adjoining node numbers associated
with the conductors of Fig. 1;

1,1,2 - G1 between nodes 1 and 2

2,2,3 - G2 between nodes 2 and 3 (15)

3,3,4 - G3 between nodes 3 and 4

4,4,5 - G4 between nodes 4 and 5 .

Note also the row and column position of conductor values off the main diagonal in the
[A] coefficient matrix, Eq. (13). By retaining the adjoining node numbers for each con-
ductor we are able to identify its element position in the coefficient matrix. As a con-
sequence we need store only the finite values. The main diagonal term in a composite of
the node capacitance and conductor values off the main diagonal.

The program operates on the adjoining node numbers to form what is termed the
pseudo-compute sequence (PCS). The nodes are to be calculated sequentially in ascend-
ing order, so the adjoining nodes are searched until the number 1 is found. When this
occurs the conductor number and the adjoining node number are stored as a doublet
value. The search is continued until all nodes one are located and the conductor number
for the last receives a minus sign. The process is then continued for node two, etc., until
all the node numbers have been processed. The pseudo-compute sequence formed (LPCS)
is shown below left. A slight variation to this operation is to place a minus sign on the
original other adjoining node number so that it is not recognized when it is searched for.
The resulting pseudo-compute sequence thus formed (SPCS) is shown below right.

LPCS SPCS

-1,2 -1,2
1,1 -2,3

-2,3 -3,4
2,2 -4,5

-3,4 -0,0
3,3

-4,5
-4,4

9

MARY E. GEALY

The above pseudo-compute sequences are termed long (LPCS) and short (SPCS), respec-
tively. By starting at the top of the pseudo-compute sequence, we are operating on node
1. The two values identify the conductor into the node (the position of the conductor
value in an array of conductor values) and the adjoining node (the position of the tem-
perature, capacitor, and source values in arrays of temperature, capacitor, and source
values, respectively). The node being operated on starts as one and is advanced by one
each time a negative conductor number is passed.

It is easy to see that the LPCS identifies the element position and value locations of
all the off-diagonal elements of the row being operated on. It takes complete advantage
of the sparsity of the coefficient matrix. It is well suited for "successive point" iteration
of the implicit equations because all elements in a row are identified. When a row is
processed and the new T value obtained, the new T can then be used in the calculation
procedure of succeeding rows.

The SPCS identifies each conductor only once and in this manner takes advantage
of the symmetry of the coefficient matrix as well as the sparsity. It is well suited for
explicit methods of solution. The node being operated on and the adjoining node num-
ber reveal their temperature value locations and their source value locations. The explicit
solution subroutines calculate the energy flow through the conductor, add it to the source
location of the node being worked on, and subtract it from the source location for the
adjoining node. However, if the short pseudo-compute sequence were utilized for im-
plicit methods of solution, they would require the use of slower "block" iterative proce-
dures. The succeeding rows do not have all of the elements defined, and the energy rates
passed ahead were based on old temperature values.

Data Logistics

The pseudo-compute sequence formulated as shown above allow the program to store
only the finite values in the coefficient matrix, thereby taking advantage of its sparsity.
In addition, the SPCS takes advantage of any symmetry which may exist. Multiply-
connected conductors which will be covered in the next section allow the user to take
advantage of similarity as well. The foregoing is fairly easy to follow, especially if the
nodes and conductors start with the number 1 and continue sequentially with no missing
numbers. This restriction is too limiting for general use on large network models. To
overcome this restriction the program assigns relative numbers (sequential and ascending)
to the incoming node data, conductor data, constants data, and array data in the order
received. Any numbers missing in the actual numbering system set up by the user are
packed out, thereby requiring only as much core space as is actually necessary.

All solution (Execution) subroutines require three locations for diffusion node data
(temperature, capacitance, and source) and one location for each conductor value. They
also may require from zero to three extra locations per node for intermediate data
storage. Each node in a three-dimensional network has essentially six conductors con-
nected to it but only three are unique; i.e., each additional node requires only three
more conductors. Hence, each node in a three-dimensional system requires from six to
nine storage locations for data values (temperature, capacitance, source, three conductors,
and up to three intermediate locations). The two integer values that make up a doublet
of the PCS are packed into a single core location. Hence, for a three-dimensional network,

10

NRL REPORT 7656

each node requires approximately three locations for data addressing for the short and
six locations for the long pseudo-compute sequence. The number of core locations re-
quired for node can vary from 9 to 15.

The program requires the user to allocate an array of data locations to be used for
intermediate data storage and initialize array start and length indicators. Each subroutine
that requires intermediate storage area has access to this array and the start and length
indicators. They check to see that there is sufficient space, update the start and length
indicators, and continue with their operations. If they call upon another subroutine re-
quiring intermediate storage, the secondary subroutine repeats the check and update
process. Whenever any subroutine terminates its operations it returns the start and length
indicators to their entry values. This process is termed dynamic storage allocation and
allows subroutines to share a common working area.

Order of Computation

A problem data deck consists of data and operations blocks which are preprocessed
by CINDA and passed on to the system FORTRAN compiler. The operations blocks are
named EXECUTION, VARIABLES 1, VARIABLES 2 and OUTPUT CALLS. The
FORTRAN compiler constructs these blocks as individual subroutines with the entry
names EXECTN, VARBL1, VARBL2 and OUTCAL, respectively. After a successful com-
pilation, control is passed to the EXECTN subroutine. Therefore, the order of computa-
tion depends on the sequence of subroutine calls placed in the EXECUTION block by
the program user. No other operations blocks are performed unless called upon by the
user either directly by name or indirectly from some subroutine which internally calls
upon them. The network execution subroutines listed on p. internally call upon
VARBL1, VARBL2, and OUTCAL. Their internal order of computation is quite simi-
lar, the primary difference being the analytical method by which they solve the network.
Figure 3 represents a flow diagram of all the network solution subroutines; the subroutine
writeups contain the comparisons made at the various check points and the routings taken.

Systems Programming

CINDA is actually an operating system rather than an applications program. Two
programs are run and executed, the second program being the product of the first. The
initial program, the preprocessor, operates in an integral fashion with a large library of
assorted subroutines which can be called in any sequence desired. It reads all of the in-
put data, packs them, assigns relative numbers, forms the pseudo-compute sequence, and
writes the data on two different peripheral units. One unit contains FORTRAN source
language generated from the operations blocks, with all of the data values dimensioned
exactly in name COMMON. This program, the processor, is then compiled and executed,
using as input the data from the first-mentioned peripheral unit. The FORTRAN allo-
cator has access to the CINDA subroutine library and loads only those subroutines re-
ferred to by the problem being processed.

Due to this type of operation, CINDA is extremely dependent on the system soft-
ware supplied. However, once the program has been made operational on a particular
machine, the problem data deck prepared by the user can be considered as machine
independent.

11

MARY E. GEALY

STRT

.~~~~
VA BL 113

(<> -A- .E

<2

T D

Fig. 3-Basic

E t

OPERATION

| CTS I

|IVARBI-1 I

I SN I

IVARBL2 I

OUTCAL

MTC

I El

DESCRIPTION

Calculate time step

Variables 1 operations

Solve network

Variables 2 operations

Output calls operations

Modify time control

Erase iteration

Check Reverse direc

<~> Backup nonzi

<I Relaxation cr

<&> Time or temp

<+2 Backup nonzi

<I> Not time to p

</ 2\Problem stop

flowchart for network solution subroutines

tion if

ero

iteria not net

ierature change too large

3ro

print

time not reached

12

NRL REPORT 7656

III. DATA INPUT REQUIREMENTS

A CINDA problem data deck consists of both data and instruction cards. The card-
reading subroutines for CINDA do not utilize a fixed format type of input; but instead
use a free-form format. The type of data is designated by a mnemonic code in columns
8, 9, and 10. This is followed by the data field which consists of columns 12-80 or the
instruction field which consists of columns 12-72. Although blanks are allowed before
or after numerical data they may not be contained within. The number 1.234 is fine,
but 1. 234 will cause the program to abort. The program processes the problem data
into FORTRAN common data and reforms instructions into FORTRAN source language
which are then passed on to the system FORTRAN compiler. Instruction cards which
contain an F in column 1 are passed on exactly as received. Any instruction card with
or without an F in column 1 may contain a statement or sequence number in columns
2-5 which is passed on to and used by the FORTRAN compiler.

The most frequently used mnemonic code is three blanks. The data following this
blank mnemonic code may be one or more integers, floating-point numbers (with or with-
out the E exponent designation) or alphanumeric words of up to six characters each.
The reading of a word or number continues until a comma is encountered and then the
next word or number is read. As many numbers or words as desired may be placed on
a card, but they may not be broken between cards. A new card is equivalent to starting
with a comma and therefore no continuation designation is required. All blanks are
ignored and reading continues until the terminal column is reached or a dollar sign en-
countered. Comments pertinent to a data card may be placed after a dollar sign and are
not processed by the program. If sequential commas are encountered, floating-point zero
values are placed between them.

The next most frequently used code is BCD (for binary-coded decimal) which must
be followed by an integer 1 through 9 in column 12. The integer designates the number
of 6-character words immediately following it. Blanks are retained and only the desig-
nated number of 6-character words are read from the card. The mnemonic code END is
utilized to designate the end of a block of input to the program. The code REM serves
the same function as a FORTRAN comment card; it is not processed by the program
but allows the user to insert nondata for clarification purposes. The special codes CGS,
CGD, and GEN will be discussed later in this section.

The data deck prepared by a program user consists of various input blocks contain-
ing either data or instructions. A fixed sequence of block input is required, and each
block must start with a BCD 3 header card and terminate with an END card (mnemonic
codes). Specific details about these blocks follows.

Title Block

The first card of a problem data deck is the title block header card. It conveys in-
formation to the program as to the type of problem, which data blocks follow, and how
they should be processed. The three options presently available are

13

MARY E. GEALY

8

BCD 3GENERAL
or BCD 3THERMAL SPCS
or BCD 3THERMAL LPCS

The GENERAL indicates that a nonnetwork problem follows and therefore no node or
conductor data is present. The THERMAL cards indicate that a conductor-capacitor
(CG) network description follows and that either a short (SPCS) or long (LPCS) pseudo-
compute sequence should be constructed. The title block header card may be followed
by as many BCD cards as desired. However, the first 20 words (six characters each) are
retained by the program and used as a page heading by the user-designated output rou-
tines. The block must be terminated by an END card and is then followed by node data
for a CG network problem or constants data for a nonnetwork problem.

Node Data Block

As discussed in Section II, there are three types of nodes; diffusion, arithmetic, and
boundary. Diffusion nodes are those nodes with a positive capacitance and have the
ability to store energy. Their future values are calculated by a finite difference represen-
tation of the diffusion partial differential equation. Arithmetic nodes are designated by
a negative capacitance value; they have no physical capacitance and are unable to store
energy. Their future values are calculated by a finite difference representation of Pois-
son's partial differential equation. This is a steady state calculation which always utilizes
the latest diffusion node values available. Boundary nodes are designated by a minus
sign on the node number; they refer to the mathematical boundary, not necessarily the
physical boundary. Their values are not changed by the network solution subroutines
but may be modified as desired by the user.

A diffusion node causes three core locations to be utilized, one each for tempera-
ture, capacitance, and a source location. An arithmetic node receives core locations only
for temperature and source and a boundary node receives only a temperature location.
The program user is required to group his node data into the above three classes and sub-
mit them in that order. Node data input with the three-blank mnemonic code always
consists of three values-the integer node number followed by the floating-point initial
temperature and capacitance values. A negative capacitance value is used to designate an
arithmetic node while a negative node number designates a boundary node. Although the
capacitance value of a boundary node is meaningless, it must be included so as to main-
tain the triplet format.

All nodes are renumbered sequentially (from one on) in the order received. The
user input number is termed the actual node number while the program assigned number
is termed the relative node number. This relative numbering system allows sequential
packing of the data and does not require a sequential numbering system on the part of
the program user. It is worth noting that the pseudo-compute sequence is based on the
relative numbering system. Hence, the computational sequence of the nodes is identical
with their input sequence. If a user desired to reorder the computations in order to aid
boundary propagation, he needs merely to reorder his nodal input data.

14

NRL REPORT 7656

The mnemonic codes CGS, CGD, and GEN may be used. The CGS and CGD codes
are used when one or two materials, respectively, with temperature-varying properties are
to be considered. For a single material the node number and initial temperature remain
the same but instead of a capacitance value, the user may input the starting location
(integer count) or a doublet array of the temperature-varying property followed by the
actual (literal) multiplying factor value to complete the calculation or a constants loca-
tion containing it. For a node consisting of two materials, the node number and initial
temperature remain the same but the user would use two array addresses and multiplying
factors with a CGD code. These codes would look as follows:

8

CGS N#,TI,A1,FI
or CGD N#,TIAIF1,A2,F2

where N# is the integer node number and Ti is the floating-point initial temperature.
The A arguments refer to doublet arrays of temperature-varying Cp or p*Cp, and the F
arguments may be or refer to a constant location containing the weight or volume, re-
spectively. The CGS code causes the product of the interpolated value times the F factor
to be used as the capacitance value. The CGD code uses the sum of the separate inter-
polations times the factor products as the capacitance value.

To input a group of sequential nodes, the following code is available:

8

GEN N#,#N,INTI,X,Y,Z,W

where

N# is the starting node number
#N is the total number of nodes desired (integer)
IN is an increment for the generated nodes (integer)
Ti is the initial temperature for all nodes,

and the capacitance value is calculated as the produce of X times Y times Z times W. If
this product is negative, arithmetic nodes will be generated. If N# is negative, boundary
nodes will be generated. A sample node data block could be as follows:

8 12

BCD 3NODE DATA
1,80.,1.2,2,80.,1.3 $ThO DIFFUSION NUDES

CGS 3,80.,AI,4.63 $SINGLE MATERIAL NODE
CGD 4,80.,AI,2.31,A2,4.76 $DOUBLE MATERIAL NODE-
GEN 5,10,1,80.,4.63,1.,1.,1. $GENERATE 10 NODES,5-14

15,80.,-1.,16,80.,-1. $TWO ARITHMETIC NODES
-18,-460.,0 $ONE BOUNDARY NODE

END

15

MARY E. GEALY

The above does not correspond to a problem; it just represents data input. Note that the
nodes are input in the order: diffusion, arithmetic and boundary. The factor portion of
the CGS and CGD codes may be a literal (actual value) as shown or reference a constant's
location containing the value. Either one (not both) of the array arguments on the CGD
code may be a literal if the property is constant. Both codes set up linear interpolation
calls which utilize the node temperature as the independent variable and interpolate a
dependent value which is then multiplied by the factor to obtain the capacitance value.
The CGD call causes two interpolations and multiplications to be performed and sums
the products to obtain the capacitance value. These interpolations are performed each
iteration during the transient analysis.

The GEN code expects values in the following order; starting node number, number
of nodes to be generated, an increment for indexing the generated node numbers, the
initial temperature for all nodes, and four floating point numbers, the product of which
is the capacitance value.

Conductor Data Block

Two basic types of conductors may be used, regular or radiation, and either may
utilize temperature-varying properties in calculating the conductance value. When utilizing
the blank mnemonic code a regular conductor consists of the integer conductor number
followed by two integer adjoining node numbers and the floating-point conductance
value. If more than one conductor has the same constant value, they may share the
same conductor number and value. This is accomplished by placing two or more pairs of
integer adjoining node numbers between the conductor number and value. The CGS and
CGD mnemonic codes may also be utilized for conductors. They would appear as follows:

8

CGS G#,NA,NB,A1,Fi
or CGD G#,NA,NB,AI ,FI ,A2,F2

where

G# is the integer conductor number
NA is one adjoining node number
NB is the other adjoining node number.

The A arguments refer to doublet arrays of temperature-varying thermal conductivity
k(T), and the F arguments may be or refer to a constant location containing the cross
sectional area divided by path length.

For CGS with F1 positive

G = kl(Tm)*F1, Tm = (Ta + Tb)/2.0. (16)

For CGS with F1 negative

G = k1(Ta)*JF11. (17)

16

NRL REPORT 7656

For CGD 1.0

1.0 1.0+.0 (18)
kl(Ta)*F1 k2(Tb)*F2

The CGS mnemonic code may be utilized for either regular or radiation conductors.
The data consist of the integer conductor number and one pair only of integer adjoining
node numbers, and are followed by an array address and multiplying factor. A regular
conductor would normally utilize the CGS code where the addressed array would be
thermal conductivity vs temperature, and the multiplying factor would consist of the
cross-sectional area divided by path length. A surface radiation conductor would utilize
the CGS code for a temperature-varying array of emissivity with the multiplying factor
being the product of surface area times the Stephan-Boltzmann constant (F = 1.0).

The CGD code may be utilized for regular conductors passing through two mate-
rials. In this case two temperature-varying property arrays and multiplying factors are
input. Two conductance values are calculated and one over the summation of their in-
verses is returned as the conductor value. Either of the array addresses may be a literal
if one of the properties is a constant. The GEN code is also available for conductors and
is input as follows:

8

GEN G#,#G,IG,NA,INA,NB,INB,X,Y,Z,W

where

G# is the starting conductor number
#G is the total number of conductors desired (integer)
IG is an increment for the generated conductors (integer)
NA and NB are initial adjoining node numbers (integers)
INA and INB are increments for the generated adjoining nodes (integers),

and all generated conductors receive the same conductance value of X times Y times Z
divided by W. A negative G# will cause radiation conductors to be generated.

The GEN code may be used to generate sequential conductors, either radiation or
regular. The data consist of the integer conductor number, an integer for the number
of conductors to be generated, an integer increment for indexing the generated conduc-
tors, the first integer adjoining node number, an integer increment for indexing the first
adjoining node number, the second integer adjoining node number, an integer increment
for indexing the second adjoining node number, and finally four floating-point numbers;
the product of the first three divided by the fourth is the constant conductance value.
For example:

8

GEN 1,2,1,1,1,2,1,2.,2.,2.,2.
GEN -3,3,0,1,1,10,0,1.,1.,1.,1.E+15

is equivalent to

17

MARY E. GEALY

12

1,1,2,4.,2,2,3,4.
-3,1,10,2,10,3,10,1.E-15.

An additional feature of the program is the one-way conductor. This is a conductor
value which enters into the temperature calculation of only one of its adjoining nodes
and is indicated by placing a minus sign on the unaffected node. The CGS, CGD, and
GEN codes may be used for one-way conductors. Physically this occurs in incompres-
sible fluid flow, and therefore the upstream node would receive the minus sign.

A program idiosyncrasy which should be mentioned is that while a single-valued
conductor with as many adjoining node pairs as desired may be used, extending several
cards if necessary, an adjoining node pair must not be split between cards. In addition,
the CGS, CGD, and GEN card may have more than one set of data on a card, but a set
of data may not be broken between cards. All regular conductors must be entered prior
to any radiation conductors. The following is illustrative of the various conductor input
options.

8

BCD 3CONDUCTOR DATA
1,1,2,1.2,2,2,3,1.7
3,3,4,4,5,5,6,1.5
4,-7,8,-8,9,7.6

CGS 5,10,11,A3,4.6
CGD 6,12,13,A3,4.1,A4,7.6
GEN 7,3,1,1,1,9,1,1.6,4.0,1.,1.

-10,1,99,1.E-15
CGS -11,2,99,A5,1.E-14
GEN -12,4,1,3,1,99,0,1.E-14,1.,I., .
END

STWO REGULAR CONDUCTORS
$TRIPLE PLACED CONDUCTOR
$DOUBLE PLACED ONE-WAY COND.
$VARIABLE CONDUCTOR, SINGLE
$VARIABLE CONDUCTOR, DOUBLE
SGENERATE THREE CONDUCTORS
$RADIATION CONDUCTOR
$VARIABLE EMISSIVITY RADIATION
$GENERATE FOUR RADIATION COND.

The first GEN card is equivalent to the following:

12

7,1,9,6.4,8,2,10,6.4,9,3,11,6.4
and the second GEN card is equivalent to

12

-12,3,99,1.E-14,-13,4,99,1.E-14
-14,5,99,1.E-14,-15,5,99,1.E-14

If the second GEN card had incremented the conductor number by zero, it would have
been equivalent to

18

NRL REPORT 7656

12

-12,3,99,4,99,5,99,6,99,1.E-14

Once the node and conductor data have been read by the program, construction of
the pseudo-compute sequence is performed. Any errors encountered cause an appropriate
error message to be printed and a "do not execute" switch to be set. However, the pro-
gram will continue to process input data and attempt to discover any and all recognizable
errors. Items checked for are no duplicate node or conductor numbers, all conductor ad-
joining nodes must have been specified in node data, and all diffusion and arithmetic
nodes must have at least one conductor into them. A missing comma will dislocate the
data input sequence causing pages of error messages. If over 200 error messages are
printed, the program gives up and immediately terminates.

Constants Data Block

Constants data are always input as doublets, the constant name or number followed
by its value. They are divided into two types, control constants and user constants, and
may be intermingled within the block. Control constants (- 50) have alphanumeric
names while user constants receive a number. User constants are simply data storage
locations which may contain integers, floating-point numbers, or up to 6-character alpha-
numeric words. It is up to the program user to place data in user constant locations as
needed and supply the location addresses to subroutines as arguments.

Control constant values are communicated through program COMMON to specific
subroutines which require them. However, any control constant name desired can be
used as a subroutine argument. Wherever possible, control constant values not specified
are set to some acceptable value. If a required control constant value is not specified, an
appropriate error message is printed and the program terminated. It is up to the user to
check the writeups of subroutines he is using to determine control constant requirements.
A list of control constant names and brief description of each follows; check subroutine
writeups for exact usage.

ARLXCA The maximum arithmetic relaxation change allowed.
ARLXCC The maximum arithmetic relaxation change calculated.
ATMPCA The maximum arithmetic temperature change allowed.
ATMPCC The maximum arithmetic temperature change calculated.
BACKUP If nonzero, the time step just done is erased and redone.
BALENG User-specified system energy balance to be maintained.
CSGFAC Stability criteria multiplication/division factor.
CSGMAX Maximum stability criteria for the network. (CIXG) max and mi.
CSGMIN Minimum stability criteria for the network. m
CSGRAL Stability criteria range allowed.
CSGRCL Stability criteria range calculated.
DAMPA Arithmetic node damping factor.
DAMPD Diffusion node damping factor.
DRLXCA The maximum diffusion relaxation change allowed.
DRLXCC The maximum diffusion relaxation change calculated.
DTIMEH Highest time step allowed (maximum).
DTIMEI Input time step for implicit solutions.

19

MARY E. GEALY

DTIMEL Lowest time step allowed (minimum).
DTIMEU Time step used for all transient network problems.
DTMPCA The maximum diffusion temperature change allowed.
DTMPCC The maximum diffusion temperature change calculated.
ENGBAL The calculated energy balance of the system.
IDCNT A counter for STOREP and RECALL identification (integer).
LAXFAC Number of iterations before radiation conductor is linear (integer).
LINECT A line counter location for program output.
L00PCT Program count of iteration loops performed (integer).
NL00P User input number of iteration loops desired (integer).
0PEITR Causes output each iteration if set nonzero.
OUTPUT Time interval for activating OUTPUT CALLS.
PAGECT A page counter location for program output.
TIMEM Mean time for the computation interval.
TIMEN New time at the end of the computation interval.
TIMEND Problem stop time for transient analysis.
TIME0 Old time at the start of the computation interval, also used as problem

start time, may be negative.

ITEST,JTEST,KTEST,LTEST,MTEST are dummy control constants with integer
names.

RTEST,STEST,TTEST,UTEST,VTEST are dummy control constants with noninteger
names.

The following is representative of a constants data block:

8

BCD 3CONSTANTS DATA
TIMEND,10.0,OUTPUT,1.0 $CONTROL CONSTANTS
1,10,2,3,3,7,4,8 $INTLGERS
5,1.,6,1.E3,7,1.E-3 $FLOATING POINT
8,TEMP,9,ALPHA $ALPHANUMERIC

END

Array Data Block

Array data are exceedingly simple to enter. The user inputs an array number, se-
quentially lists his information, and terminates it with an END (data END, not mnemonic).
Numerous subroutines (interpolation, matrix, etc.) require that the exact number of values
in an array be specified as an integer. In order to reduce the number of subroutine argu-
ments and chance of error, the CINDA preprocessor counts the number of values in an
array and supplies this integer count as the first value in the array. The writeup of any
subroutine whose array arguments require the array integer count will list the array argu-
ment as A(IC). Subroutines whose array arguments require the first data value rather
than the integer count will list the array argument as A(DV). When a user inputs the
array number as positive, the integer count is calculated by the preprocessor and supplied
as the first value in the array. For example,

20

NRL REPORT 7656

12

1,1.6,2.4,3.8,END

The above array (Array 1) contains three data values and was input as a positive
array. By addressing Al as a subroutine argument the integer count 3 would be the first
value followed by 1.6,2.4 and 3.8. If the user wanted the 1.6 data value to be addressed
the argument should be A1+1. The user has the option of placing a minus sign on the
input array number. In this event the integer count of data values in the array is not
calculated or stored and addressing the array as Al obtains the first data value. For
example:

12

-2,1.6,2.4,3.8,END

Entering the argument A2 would address the 1.6 data value; the integer count is not
available. The following is an example of various types of arrays.

8

BCD 3ARRAY DATA
1,1.6,2.4,3.8,END $FLOATING POINT NUMBERS
2,TEMPI,TEMP2,END $ALPHANUMERIC
3 $ALPHANUMERIC

BCD 3TEMPERATURE STUDY
END

-4,SPACE,100,END $SPACE OPTION
END

Two types of alphanumeric inputs are shown above. The first allows each word to
be separated by a comma, requires each word to start with a letter, and does not allow
the use of blanks. The second requires use of the BCD mnemonic code and the integer
word count. It allows use of letters, numbers, or characters anywhere and retains blanks.
The space option is an easy way for the user to specify a large number of locations
which are initialized by the preprocessor as floating-point zeros. The space option re-
quires the word SPACE followed by the number of locations to be initialized. It may
be used anywhere in an array and as many times as desired as long as total available core
space is not exceeded.

Program Control

Aside from the title block, there are either two or four data blocks depending upon
whether the problem is GENERAL or THERMAL, respectively. No matter which, there
are also four operations blocks entitled EXECUTION, VARIABLES 1, VARIABLES 2,
and OUTPUT CALLS. The operations or instructions called for in these blocks determine
the program control. They are preprocessed by CINDA and passed on to the system
FORTRAN compiler as four separate subroutines entitled EXECTN, VARBL1, VARBL2,
and OUTCAL, respectively. When the FORTRAN compilation is successfully completed,
control is passed to the EXECTN subroutine which sequentially performs the operations

21

MARY E. GEALY

in the same order as entered by the user in the EXECUTION block. None of the opera-
tions specified in the other three blocks will be performed unless they are called for,
either directly by name in the EXECUTION block or internally by some other called-for
subroutine.

No operations will be performed unless requested by the user, and, no control con-
stants will be utilized unless some subroutine calls for them. Network solution subrou-
tines internally call upon VARBL1, VARBL2, and OUTCAL (see Fig. 3). They also use
numerous control constants, but their individual writeups in Section VIII must be con-
sulted to determine which ones and their exact usage. Network solution subroutines re-
quire no arguments but most others do. These arguments may be addresses which refer
to the location of data or they may be literals; i.e., the actual data value. All of the
input data can be addressed by using alphanumeric arguments of the following form.

TN for the temperature location of node N
CN for the capacitance location of node N
QN for the source location of node N
GN for the conductance location of conductor N
KN for the value location of constant N
AN for the starting location of array N

and control constants utilize their individual names.

When addressing arrays the user must be cautious as to the use of positive or nega-
tive arrays and address them accordingly. However, the user may uniquely address any
item in an array. For instance, the one-hundredth value in a positive array ten could be
uniquely addressed as A10+100. This plus option is available only for arrays. If perhaps
a user desired to address the 20 BCD words for the title block which were retained for
output page headings, he could do so by using the argument H1.

Dynamic Storage Allocation is a unique feature of the CINDA-3G program. Al-
though not carried to the ultimate, all subroutines which require working space generally
obtain it from a common working array. However, it is up to the user to specify infor-
mation about this array to the program. To do so, the user must place three FORTRAN
cards at the start of the Execution block, the first of which must come before the BCD
3EXECUTI0N card. For example,

1 7 21 25

F DIMENSION X(100)
BCD 3EXECUTION

F NDIM 100
F NTH 0

In the DIMENSION card, columns 21-25 must be reserved for the integer which
must be in an I5 format. The names used must be exactly as shown and in the above
would cause a working array of 100 locations to be created. If fewer or more locations
are needed, the integer 100 may be changed as desired (both for DIMENSION and
NDIM). If no working locations are required, the cards should be omitted.

22

NRL REPORT 7656

An F in column 1 indicates to the preprocessor that the card is FORTRAN and
should be passed on as received. This F option allows the user to program FORTRAN
operations directly into the operations blocks. However, the CINDA arguments listed
above are not FORTRAN compatible with the exception of the control constant names.
Therefore, it is recommended that the program user utilize CINDA subroutine calls
wherever possible. This is impossible however when logical operations are required. In
this case it is recommended that the user place CINDA data values as needed into the
available dummy control constant names allowed for that purpose. Then, FORTRAN
logical operations can be utilized with the dummy control constant names as arguments.
FORTRAN statement numbers for routing purposes may be placed in columns 2-5 on
any operations cards.

The data field for node, conductor, constant, and array data consists of columns
12-80. However, the data field of operations cards ends with column 12. In a manner
of speaking, a CINDA subroutine call is a special array and should terminate with a data
END. In order to simplify input for the user, the operations read subroutines recognize
two special characters; the left and right parentheses. The left parenthesis is accepted as
a comma, while the right parenthesis is accepted as a comma followed by a data END.
This allows what would have been

12

ADD,K1,K2,K3,END

to be more aesthetically formatted as

12

ADD(KI,K2,K3)

which is almost identical to a FORTRAN subroutine call.

Execution Operations Block

An Execution operation block might be as follows:

1 7 12 21 25

F DIMENSION X(25)
BCD 3EXECUTION

F NDIM = 25
F NTH =0
F 10 TIMEND = TIMEND + 1.0

CNFRID SEXPLICIT FORWARD DIFFERENCING
STFSEP(T20,TTEST) SPLACE TIO INTO DUMMY CC

F IF(TTEST .LE. 100.) GO TO 10
END

23

MARY E. GEALY

The above indicates a transient thermal problem in which the user desires to terminate the
analysis when the temperature at node 20 exceeds 1000F. The problem must have been
fairly small because only 25 working locations were dimensioned and CNFRWD requires
one per node. It does demonstrate the use of both CINDA calls and FORTRAN opera-
tions and that control constants are referred to by name in either. Another example
might be

1 8 12 21 25

F DIMENSION X(500)
BCD 3EXECUTION

F NOIM =500
F NTH =0

CINDSL $STEADY STATE (USES LPCS)
F TIMEND = 10.0

CNFROD $TRANSIENT ANALYSIS (USES SPCS)
END

In this case the user desires to have a steady state analysis performed on the network and
then a transient analysis performed utilizing the steady state answer as initial conditions.
However, the two-network solution subroutines referred to are incompatible in their PCS
requirements and the program would be terminated with an appropriate error message.
A further example might be

8 12

BCD 3LXECUTION
INVERSE(AI,A2) $SEE MATRIX SUBROUTINE
MULT(A2,A3) $WRITEUPS FOR OPERATIONS
LIST(A2,K1,17) $PERFORMED
LIST(A3,K2,17)

END

The above problem consists entirely of matrix operations and therefore is run as a GEN-
ERAL. The subroutines do not require any working space so none have been dimensioned.
Furthermore, no reference, direct or indirect, is made to VARBL1, VARBL2, or OUTCAL,
and those operations blocks should be empty. Even though they may be empty or not
referred to, their blockheader and mnemonic END cards must still be entered.

There is no end to the variety of examples that could be generated. In reality, the
program user is actually programming, although it is comewhat disguised as data input.
However, the program does simplify the task of data logistics, and it automates data input
and output, construction of the PCS, loading the subroutine library, and other systems
features, thereby greatly lessening the programming knowledge which might otherwise be
required of a user.

A point well worth considering is proper initialization. All instructions contained in
the other three operations blocks are performed each iteration or on the output interval.
If an operation being performed in Variables 1 is utilizing and producing nonchanging
constants, it should be placed in the Execution block (prior to the network solution call) so
that it will be performed only once. Input arrays requiring postinterpolation multiplication

24

NRL REPORT 7656

for units conversion only could be prescaled, thereby deleting and multiplication process.
Complex functions of a single independent variable requiring several interpolation values
which are then combined in a multiplicative fashion can be precalculated vs the independ-
ent variable. Such a precalculated complex function reduces the amount of work per-
formed during the transient analysis. A great many operations of this type can be per-
formed in the Execution block prior to call for a transient analysis. Also, output operations
to be performed once the transient analysis is completed may be placed directly into the
Execution block following the transient network solution call.

Variables 1 Operations Block

The statement that this program solves nonlinear partial differential equations of the
diffusion type is not quite accurate. In reality the program only solves linear equations.
However, nonlinearities are evaluated at each computation interval and in this manner
generally yield acceptable answers to nonlinear problems. This method is more properly
termed quasilinearization. The Variables 1 operation block allows a point in the computa-
tional sequence at which the user can specify the evaluation of nonlinear network ele-
ments, coefficients, and boundary values (see Fig. 3). The CGS and CGD mnemonic
codes utilized for node and conductor data cause the construction of various subroutine
calls which are placed in this block by the CINDA preprocessor. The user must specify
any additional subroutine calls necessary to completely define the network prior to enter-
ing the network solution phase.

Prior to inclusion of the CGS and CGD mnemonic codes, the Variables 1 operations
block primarily consisted of linear interpolation subroutine calls input by the user for the
evaluation of temperature varying properties. While these linear interpolation calls are
automated through use of the CGS and CGD codes, it is up to the program user to
specify any required bivariate or trivariate interpolations or other functional evaluations
necessary. Just prior to performing the Variables 1 operations, all network solution sub-
routines zero out all source locations. Therefore, the user is required to specify constant
as well as variable or nonlinear impressed sources in this block. A Variables 1 operations
block could be as follows:

1 8 12

BCD 3VARIABLES I
STFSEP(10.0,Q17) $CONSTANT IMPRESSED SOURCE
DIDEGI(TIMEM,A8,Q19) STIME VARYING SOURCE
D2D1WM(T18,TIMEN,A19,7.63,G18) $BIVARIATE FUNCTION

F TTEST=11.6
F IF (TIMEN.GT. 10.)TTEST =0.0

STFSEP(TrEST,027) $VARIABLE SOURCE
END

The first call above places a constant heating rate of 10.0 into the source location of
node 17. The second call causes a linear interpolation to be performed on array 8 using
mean time as the independent variable to obtain a time-varying heating rate for node 19.
The third call uses mean time and the temperature at node 18 as independent variables
to perform a bivariate interpolation. The interpolated answer is then multiplied by 7.63

25

MARY E. GEALY

and placed as the conductance value of conductor 18. The next two cards are FORTRAN
and allow a value of 11.6 to be placed into control constant TTEST until TIMEN exceeds
10.0, after which a value of 0.0 is placed into TTEST. This amounts to a single step in
a "staircase" function. The last card places the value from TTEST into the source loca-
tion for node 27. Another sample Variables 1 block might look as follows:

8 12

BCD 3VARIABLES I
BLDARY(A12+1,T1,T7,T3,T4) $CONSTRUCT VECTOR
D1DEGI(T7,A19,A13+2) $INTERPOLATION
IRRADE(A7,A13,A1O,A12) $IR RADIOSITY EXPLICIT
BRKARY(A12+1,Q1,Q7,Q3,Q4) $DISTRIBUTE 0 RATES
D1DIWM(TIMEM,A9,0.35,TTEST)
ADD(TrEST,01,Q1) $ADD TWO RATES

END

The first call causes the construction of an array of four temperature values necessary as
input to an infrared radiosity subroutine (third card). The second call causes the linear
interpolation of a temperature-varying property from array 19 to be placed into array
13 + 2 which is the second array argument for the radiosity call. This second argument
must be an array of surface emissivities for the surfaces under consideration; therefore
array 19 must be an array of temperature-varying emissivity. The BRKARY call takes
data values from array 12 + 1, 2, 3, and 4 and places them into the source locations for
nodes 1, 7, 3, and 4, respectively. The fifth call performs linear interpolation on array 9
using TIMEM as the independent variable, multiplies the result by 0.35 and places it in
control constant TTEST. This might be a time-varying solar heating rate where 0.35 is the
solar absorptivity. The ADD call adds this rate to what is already contained in the source
location for node 1. Each node has one and only one source location. If a user desires
to impress more than one heating rate on a node, he must sum the rates and supply the
value to the single source location available per node.

The Variables 1 operations block is the logical point in the network computational
sequence for the calculation of impressed sources whether they are due to internal dissi-
pation of power components, radiation depositation, aerodynamic heating, or orbital
heating. If a desired subroutine is not available, the user may always add his own; data
communication is obtained through subroutine arguments as in any other subroutine.

Variables 2 Operations Block

With regard to the network solution, the Variables 1 operations may be thought of
as presolution operations and the Variables 2 operations as postsolution operations. In
Variables 1 the network was completely defined with respect to nonlinear elements and
boundary conditions. Variables 2 allows the user to look at the network just solved. He
may meter and integrate flow rates, make corrections in order to account for material
phase changes, or compare answers just calculated with test data in order to derive em-
pirical relationships. A simple Variables 2 operations block might be as follows:

26

NRL REPORT 7656

8 12

3VARIABLES 2
QMETER(TI,T2,GI,KI)
OINTEG(K2,DTIMEU,K2)
RDTNQS(T5,TI,D8,K3)
QINTEG(K3,DTIMEU,K4)
ADD(K2,K4,K5)

$METER HEAT FLO4
$INTEGRATE HEAT FLOW
$METER RADIATION FLOW
$INTEGRATE RADIANT FLOW

The first call measures the heat flow from node 1 to node 2 through regular con-
ductor 1 and stores the result in constant location 1. The second call performs a simple
integration with respect to time and sums the result into constants location 2. The third
call measures heat flow through a radiation conductor which is then integrated by the
fourth call. The sum of the two integrations is obtained by the fifth call. Another Vari-
ables 2 operations block might be as follows:

8 12

BCD 3VARIABLES 2
ABLATS(AI,1.76,K8,A7,T15,C15)

END
$ABLATIVE ON NODE15

Phase change subroutines such as the above are unique in that they perform auto-
matic corrector operations. Node 15 has been solved by the network solution subroutine
as though no ablative existed. The ABLATS subroutine then corrects the temperature at
node 15 to account for the ablative material. It does this by calculating the average
heating rate to node 15 over the time step just performed and utilizes it as an inner-
surface boundary condition for the internally constructed one-dimensional network repre-
sentation of the ablative material. The correctness of this analytical approach can be
rigorously substantiated for use with explicit network solution subroutines. However,
when used with large time step implicit methods it yields a controlled instability and the
results may be questionable. It is up to the user to determine the solution accuracy by
whatever means available. A more complicated Variables 2 operations block could be
as follows:

1 5 8 12

BCD 3VARIABLES 2
DiDEG1(TIMEN,A1O,K8)
SUB(T8,K8,TTEST)

F IF(TTEST.LE.2.0)GO TO 10
MLTPLY(G7,0.99,G7)

5 STFSEP(-].O,BACKUP)
F GO TO 20
F 10 IF(TTEST.GE.-2.0) GO TO 15

MLTPLY(G7,1.01,G7)
F GO TO 5

15 QMETER(T8,T15,K9)
QINTEG(K9,DTIMEU,K10)

F 20 CONTINUE
END

$GET TEST TEMPERATURE
$OBTAIN TEMP DIFFERENCE

$REDUCE CONDUCTANCE
$SET BACKUP NON-ZERO

SINCREASE CONDUCTANCE

27

BCD

END

MARY E. GEALY

Fig. 4-Three-dimensional
network

This corresponds to a portion of a network such as shown in Fig. 4.

Array 10 is a time-temperature test history of node 8, and node 15 is a known
boundary reference temperature. The problem is to calculate the value of conductor 7
which will yield a calculated temperature at node 8 that is within ±2.0 degrees of the test
history. The above Variables 2 operations will attempt to modify conductor 7 so that it
will meet the constraints on temperature 8. It is quite "brute force" and unsophisticated.
However, the corrector operations are at the discretion of the user. If the tolerances
were too severe or the correction operations too strong, the correction for one tolerance
could lead to dissatisfaction of the other and an impasse result. If the reference tempera-
ture at node 15 were incorrect, possibly no value of conductor 7 would satisfy the con-
straints. The end result of such a study would be to produce a plot of conductance 7 vs
time which could be used to derive an empirical relationship with other parameters. Too
wide a tolerance would cause the plot to resemble a staircase function. Please note that
either condition being unsatisfied causes control constant BACKUP to be nonzero and
the iteration to be redone with the corrected conductor 7 value. Only when all criteria
are met are the metering and integration operations performed.

Output Calls Operations Block

This operations block could have been entitled Variables 3 but Output Calls seemed
more appropriate. In it a user may call upon any desired subroutine. However, its con-
tents are performed on the output interval (see Fig. 3), so it is only logical that it would
primarily contain instructions for outputting information. There is a variety of output
subroutines offering the user several format options. A very simple Output Calls block
would be as follows:

8 12

BCD 3OUTPUT CALLS
PRNTMP

END

The above call will output certain time control information and the temperature of every
node in the network under consideration. The node temperatures will correspond to the
relative node numbers set up by the preprocessor, not the actual node numbers set by

28

NRL REPORT 7656

the user. The preprocessor lists out all of the input data. Immediately after the
input node data a dictionary of relative node numbers vs actual node numbers is
listed. By utilizing it a user can correlate the relative node temperatures with his
actual numbers.

The Output Calls will be performed at problem start time and on the output inter-
val until problem stop time is reached. For example, a 100-min transient analysis
with an output interval of 5 min would cause the Output Calls operations to be per-
formed 21 times.

The above data and operations blocks constitute a problem data deck which must be
terminated by the following card:

8 12

BCD 3END OF DATA

Parameter Runs

Parametric analyses which do not involve network of operations changes to the
original problem may be performed on the same computer run. Only data values such
as output page heading, temperatures, capacitances, conductances, constants, and arrays
may be changed. The data change blocks must all be specified whether changes occur
in the block or not, and the data input is identical to the preceding discussion with the
exception of conductors. When specifying new conductances, the adjoining node infor-
mation is deleted; only the conductor number and value are required. The only mnemon-
ics allowed are the three blanks and BCD. When changing an array, the entire new array
must be entered and be exactly the length of its original. No new arrays or numbered
constants may be defined.

Two parametric run options are available, INITIAL and/or FINAL, and they may
be used several times within the problem data deck. The problem data deck as initially
entered is referred to as the original problem. Any and all INITIAL parameter runs refer
to it exactly as it was put in. The FINAL parameter run refers to the problem just com-
pleted exactly as terminated. When two INITIAL parameter runs are attached to the end
of a problem data deck, they both refer to the original problem at start time. However,
when two FINAL parameter runs are attached to the end of a problem data deck, the
first refers to the original as terminated, and the second refers to the first FINAL param-
eter run as completed. The CINDA control cards necessary to specify a parameter run
are as follows:

29

MARY E. GEALY

8 12

BCD 3INITIAL PARAMETERS
or BCD 3FINAL PARAMETERS

END
BCD 3NODE DATA
END
BCD 3CONDUCTOR DATA
END
BCD 3CONSTANTS DATA
END
BCD 3ARRAY DATA
END

The parameter run decks are inserted in the problem data deck immediately preceding the
BCD 3END OF DATA card. After the BCD parameter card, the user may insert addi-
tional BCD data to replace the original problem output page heading. Parameter runs
conserve machine time mainly because the PCS does not have to be reformed. If a user
desires, he may accomplish FINAL parameter runs by calling the network execution sub-
routine twice in the Execution block and inserting the necessary calls to modify data val-
ues between them.

Store and Recall Problem Options

The purpose of the store and recall options is to provide the user with the means to
interrupt his program at any point, store the current data values on tape, and continue
processing. While the parameter run capability is useful for performing parametric analy-
ses in the same run, the store and recall capability allows an indefinite time lapse between
parametric analyses. In addition, long duration problems may be broken into several
short duration runs. If a parametric analysis is such that the first portion of the runs are
identical, then the problem can be run for the constant portion, stored and then recalled
as many times as necessary.

The store problem feature is achieved by a user initiated subroutine call which is
as follows:

12

STOREP(KX)

where KX refers to a constant location containing an alphanumeric identification name
for the stored problem. The call may be used as many times as desired, but each activa-
tion must reference a unique name. To allow the STOREP call to be placed in a loop,
the programmer must use the control constant IDCNT. By incrementing this constant
within the loop (not to exceed 999), a unique combination of KX and IDCNT will be
available to identify the problem.

The recall problem feature is a CINDA preprocessor option, which is activated by
the following card:

30

NRL REPORT 7656

1 13 22

RECALL AAAAAA NNN

where AAAAAA is the alphanumeric identification name of the stored problem, and NNN
is the integer IDCNT. (If IDCNT was not used with STOREP, NNN = 0). This single
card replaces the blank card preceding the problem data deck and must be followed by a
BCD 3INITIAL PARAMETERS data deck. The stored problem identified will be searched
for and brought into core from the two storage tapes. Any data changes specified will be
performed and the control is passed to the first subroutine call in the EXECUTION block.

The problem is stored on logical unit 22 and recalled from unit 21; the processor
(tape 40) must be saved in a store run and remounted on a recall run. The user must
remember that the recalled problem contains the STOREP call. Because of this feature,
the user has the option whether or not to store the problem again. Logical unit 22 is
equipped depending on this option. Section VII should be consulted for details concern-
ing deck setups, tape usage, and Job Request forms.

Data Printing Option

At times, the user may wish to see what is being stored on the data tapes during
preprocessing (i.e., LUT1, LUT2, LUT3, LUT4, and LB3D). A printout will occur if an
asterisk is put in column 80 of the first BCD card (the GENERAL, THERMAL, INITIAL
PARAMETERS, or FINAL PARAMETERS card). After each block of the problem deck
is printed, there will be a listing of the appropriate data (most of which will be binary).

IV. ERROR MESSAGES

Due to the variety of subroutines available and the variable number of arguments
which some of them have, no check is made to determine if a subroutine call has the cor-
rect number of arguments. An incorrect number of arguments on a subroutine call will
generally cause job termination immediately after successful compilation, usually without
any error message. If the above occurs, the user should closely check the number of ar-
guments for his subroutine calls.

Numerous error messages can be put out by the preprocessor. These error messages
are listed below and are grouped according to various preprocessor functions. All error
messages are preceded by three asterisks, which have been deleted below. Self-explanatory
messages are not enlarged upon.

Processing Data Blocks-

DATA BL0CKS IN IMPROPER ORDER OR ILLEGAL BLOCK
DESIGNATION ENCOUNTERED.

AN IMBEDDED BLANK HAS BEEN ENCOUNTERED IN THE LAST LINE.

BLANK COUNT OF 10 HAS BEEN EXCEEDED.

31

MARY E. GEALY

INTEGER FIELD EXCEEDS 10.

REAL NUMBER FIELD EXCEEDS 20.

ALPHAMERIC FIELD EXCEEDS 6.

MULTIPLE DECIMAL P0INTS HAVE BEEN ENCOUNTERED.

NODES MUST BE ORDERED - DIFFUSION, ARITHMETIC, BOUNDARY.

C0NDUCT0RS MUST BE ORDERED - REGULAR, RADIATION.

NODE NUMBER, XXXXX, IS THE DUPLICATE OF THE XXXXXTH NODE.

CONDUCTOR NUMBER, XXXXX, IS THE DUPLICATE OF THE XXXXXTH
C0NDUCT0R.

CONSTANT NUMBER, XXXXX, IS THE DUPLICATE 0F THE XXXXXTH
CONSTANT.

ARRAY NUMBER, XXXXX, IS THE DUPLICATE OF THE XXXXXTH ARRAY.

FIXED CONSTANT NAME NOT IN LIST.

NUMBER OF GEN ARGUMENTS, XXX, EXCEEDS NUMBER REQUIRED.

STORAGE ALLOTTED FOR THIS DATA BLOCK HAS BEEN EXCEEDED.
PROCESSING WILL RESUME WITH THE NEXT DATA BLOCK.

Forming PCS-

N0DE, XXXXX, HAS N0 MATCH IN THE NA-NB PAIRS.

ADJOINING NODE, XXXXX, 0F NA-NB PAIR HAS N0 MATCH IN THE NODAL
BLOCK, CONDUCTOR IS N0., XXXXX

Processing Program Blocks-

EXECUTION BLOCKS IN IMPROPER ORDER 0R ILLEGAL BLOCK
DESIGNATION ENCOUNTERED.

Explanation: Some alpha character other than K or A has been used to reference a
data block. In a thermal problem a designator other than G, K, or A
is assumed to be referencing the nodal block.

MISSING NODE NUMBER, XXXXX.

MISSING CONDUCTOR NUMBER, XXXXX.

MISSING CONSTANT NUMBER, XXXXX.

MISSING ARRAY NUMBER, XXXXX.

FIXED CONSTANT NAME, AAAAA, NOT IN LIST.

32

NRL REPORT 7656

NUMBER OF SUBROUTINES REQUESTED EXCEEDS 75.

Explanation: More than 75 unique subroutines have been called.

Processing Parameter Changes-The first five parameter change error messages are
prefaced with the words: PARAMETER CHANGE ERROR.

NODE NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL PROBLEM.

CONDUCTOR NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL
PROBLEM.

C0NSTANT NUMBER, XXXXX, WAS N0T DEFINED IN THE ORIGINAL
PROBLEM.

ARRAY NUMBER, XXXXX, WAS NOT DEFINED IN THE ORIGINAL PR0BLEM.

C0NSTANTS BLOCK WAS EMPTY IN THE ORIGINAL PR0BLEM.

ARRAY BL0CK WAS EMPTY IN THE ORIGINAL PR0BLEM.

ARRAY NUMBER XXXXX - DIMENSIONS NOT EQUAL. ORIGINAL,
XXXXX, CHANGE, XXXXX.

Terminations Due to Errors (no preceding asterisks)-

THE AB0VE PARAMETER CHANGE WILL NOT BE EXECUTED.

ERROR TERMINATI0N - LOADING IS SUPPRESSED.

V. OPERATING SYSTEM DESCRIPTION

General

The CDC-3800 (FORTRAN IV) version of CINDA exists logically as a preprocessor,
processor, and library. The operational continuity of these portions is made possible by
the CDC Drum SCOPE system (see Fig. 5).

The function of the preprocessor is to operate on a user-supplied problem and pro-
duce the following items.

1. Processor Main Program-This small routine acts primarily as a communications
link in providing addressing relationships between the operational user program and user
data.

2. User Program-These FORTRAN source subroutines are operational equivalents
of the user' Execution, Variables 1 and 2, and Output Calls blocks.

3. User Data-Binary data generated consists of definitions of parameters referenced
in the various user data blocks and their corresponding values.

33

MARY E. GEALY

PROBLEM

GENERATED
FORTRAN

SUBROUTINE'
ON DRUM UNI'

Fig. 5-Flow of CINDA operating system

34

1. STORED
PROBL EM

2. PLOTTING
DATA

I

NRL REPORT 7656

The preprocessor and appropriate use of the CDC-3800 system control cards allows con-
struction of the above from tape when the RECALL option is utilized.

The processor performs reading of the user data values prepared previously and calls
the user program (i.e., Execution block).

The CINDA library contains a large number of various types of subprograms to ac-
complish most user requirements. Drum SCOPE's LIBEDIT provides simple, flexible
methods for the maintenance of this library. In addition, it is not necessary that a sub-
routine be updated to the library prior to availability in the user problem.

Preprocessor

Operation of the Preprocessing Phase.-(See Fig. 6 for flowchart.) The main pro-
gram PREPRO accomplishes the initialization of data values and tape units and defines
the order of processing by calling seven subroutines.

1. If the problem being processed is a RECALL problem, subroutine SPLIT is
called to read the recalled problem data and number definitions from the input tape and
write these on the appropriate work tape. SPLIT calls SKIP if the input tape is not posi-
tioned at the problem being recalled (see Store and Recall Problems Options).

2. CODERD reads the title block and the block title cards. It then calls DATARD,
which reads the free-form data cards in the four (or two, if General Problem) data blocks
and any parameter change data. Each card is read, a format is constructed for it, and
then it is reread. The data from each block are written on the data tape as one record.
The number definitions of the data and the NA-NB pairs are written on work tapes.

3. PSEUDO reads the node number definitions and NA-NB pairs from work tape.
The PCS (long or short) is constructed, packed by PACK43 and flagged by ORMIN, and
written on the data tape. PACK43 and ORMIN call BIT, a COMPASS packing and un-
packing routine.

4. GENLNK constructs the main program of the processor (LINKO), including
COMMON and DIMENSION information. BLKCRD and STFFB are called upon to fill
an array with FORTRAN source code, which is then written onto logical unit LB4P by
WRTBLK. WRTSCOPE writes SCOPE at the end of LB4P after completion of the other
four subroutines (EXECTN, VARBL1, VARBL2, and OUTCAL).

5. PRESUB reads the title cards of the four program blocks and initiates the con-
struction of each new subroutine. CINDA4 converts the CINDA "calls" in the program
blocks into FORTRAN subroutine calls. Data referenced by input number definition is
changed to refer to its relative location in COMMON data arrays.

6. INITAL combines the original set of the data and the nitial parameter changes
and writes the updated set of data on the data tape.

35

MARY E. GEALY

36

'0
0

0CID

0

4-

.t

Co

z

0

qall

*0

0

0)

z

IQ

0

0)

4;

NRL REPORT 7656

7. FINAL converts final parameter change data (number definitions and values) to
relative array locations and values and writes number-value records on the data tape.

VI. EXTERNAL PLOTTING PACKAGE

CINDA's plot package, for use on the CALCOMP plotter, is an external program that
will plot a graph of time vs temperature for each problem node. The input to this pro-
gram is an output file (unit 24) generated by TSAVE during a previous CINDA problem
run. The program can be run separately from the CINDA problem using the tape from
TSAVE as input, or it can be placed behind the CINDA problem in a single run. In the
latter case, unit 24 may be either a drum unit or a tape equipped for later use.

The package, available as a binary deck, consists of three routines. The main pro-
gram, PLOTTEMP, calls PLOTPREP, which rearranges the data from the input tape and
writes it on unit 25. Unit 25 contains the actual node numbers, the time array, and the
temperature profile for each node. PLOTTEMP then reads a set of data cards which give
the plot heading, X- and Y-axis limits, and nodes to be plotted. The temperature array
for each node is read, and if the node is to be plotted, PLOTT is called, which in turn
activates CALCOMP routines. A separate set of axes is drawn for each node. When all
temperatures have been read, the tape is rewound and a new set of data (if any) is read.

Data Set

A data set consists of at least three cards.

*CARD 1-TITLE

Columns 1-40 will be used as the plot heading.

*CARD 2-AXIS LIMITS and TEMPERATURE SCALE OPTION

Four floating-point values must be entered in an E9.2 format. The minimum
and maximum times (X-axis) must be in fields 4-12 and 14-22, respectively; the mini-
mum and maximum temperatures (Y-axis) must be in fields 24-32 and 34-42, respectively.
Column 43 contains the temperature scale option. A blank indicates that the data will be
plotted in Fahrenheit temperatures, and a 1 specifies Centigrade.

4 12 22 32 43
4, ,4, 4 4, 4,

NNNNNN.NN NNNNNN.NN NNNNNN.NN NNNNNN.NNI

(TIMEMIN) (TIMEMAX) (TEMPMIN) (TEMPMAX) (Centigrade scale)

*CARD 3-NODES and OPTION

Options:

Plot all nodes-card is blank.
Plot certain nodes-column 1 contains a $; nodes are listed.

37

MARY E. GEALY

Plot all but certain nodes-column 1 contains any character but * or $;
nodes are listed.

The nodes may be listed individually or in inclusive pairs. Each node must be fol-
lowed by a comma except for the inclusive pair, which must be separated by a blank in-
stead of a comma. (The second node of the pair must be followed by a comma, how-
ever.) An asterisk (*), instead of a comma, must follow the last node.

The node numbers must be in I4 format, right adjusted to columns 5, 10, 15, . .

80. The commas or separating blanks go in columns 6, 11, 16, . . ., 76. Data may be
continued to a following card by putting a comma or blank in column 1 of that card.
Data cards will be read until an asterisk is encountered (limit of nine cards).

Examples

1. 1 5 10 15 20

$ I0, 15, 25 30*

Plot nodes 10, 15, 25, 26, 27, 28, 29, 30. (Pairs must be in ascending order;
otherwise, order of magnitude isn't important.)

2. 1 5 10 15 20 25

+ 5, 8, I0 12, 15*

Plot all nodes but 5, 8, 10, 11, 12, 15.

3. 1 5 10 15 20 75 80

(Card 1) $1050,1060 1062,1070, .2000,2005
(Card 2) 2007,2012*

Plot 1050,1060,1061,1062,1070, ... ,2000,2005,2006,2007,2012.
(A comma in column 1 of card 2 would exclude node 2006.)

4. 1 5 10 15 ... 80

(Card 1) + 30, 25 28 .100
(Card 2) *

Plot all but nodes 30, 25, 26, 27, 28, ... , 100.

Another set of data may follow the last node card, thus enabling the programmer to
redefine the title and limits and to plot different nodes. Any number of data sets may
be used.

38

NRL REPORT 7656

Diagnostics

Messages that may be encountered while plotting are listed below. The first two will
not cause job termination.

1. *** SOME NODES T0 BE PLOTTED WERE NOT FOUND ON INPUT TAPE,
0R WERE DUPLICATED ON NODE CARD. ***

NODES 0N INPUT TAPE -
(listing of nodes)

NODES T0 BE PLOTTED-
(listing of nodes)

Cause: The number of nodes to be plotted is larger than the number of nodes
actually plotted.

2. IN FOLLOWING NODE CARD, AN INCLUSIVE PAIR OF NODES IS
FOLLOWED BY A BLANK-A C0MMA IS ASSUMED AND PROCESSING
IS CONTINUED.

3. * WRONG FORMAT USED ON FOLLOWING NODE CARD-
PROCESS NEXT SET OF DATA, IF ANY.

Cause: A character other than a comma, blank, or asterisk has been found in a
column intended for those characters only.

This error terminates the processing of a current data set, and processing con-
tinues to the next set if there is one. (Most data format errors will cause job
termination by the system.)

VII. TAPE USAGE AND DECK SETUPS

This section shows deck setups and tape usage for various types of runs on the 3800
Drum SCOPE system.

CINDA Operating System

Table 1 lists the program and data files used in the preprocessor, processor, and
library.

Units 15, 17, 18, 19, and 27 are preprocessing units only and are available as scratch
units during processing. Units 16, 21, 22, 24, 30, 33, and 40 can also be used for that
purpose if the corresponding options are not activated.

39

MARY E. GEALY

Table 1
CINDA Tape Usage

Logical Program Function
Unit Variable

*9 CINDA Master tape; (file 1 contains preproc-
essor, file 2 contains Library).

12 LB3D Data tape (original problem and all parameter
changes).

14 LB4P Program tape (contains generated FORTRAN
routines LINKO, EXECTN, VARBL1,
VARBL2, OUTCAL).

15 LUT7 Variables 1 calls generated from node and
conductor data blocks.

**16 _ Matrix retrieval unit in library.
17 NA-NB pairs; data number definitions.

(From parameter changes.)
18 LUT3 Copy of original problem data.
19 LUT4 Parameter Change data.
20 LUTi Data number definitions.

**21 _ Problem recall data tape.
**22 - Problem store data tape.
**24 _ Output from TSAVE.

27 INTERN Data conversion scratch tape.
**30 KRR FORTRAN reread unit in preprocessor.

Matrix storage unit in library.
33 - Scratch unit in STOREP.

**40 _ Binary program tape (processor) used with
store and recall options.

*Equipped units.
**Equipped units depending on options. Matrix storage and retrieval requires equipping tapes 16 and 30.

The STOREP option requires equipping tapes 40 and 22; the RECALL option requires 40 and 21 (and
22 if desired).

General deck structures for different kinds of CINDA runs are shown below. The
character A denotes a 7 and 9 punch in the column, and a A- is for an 11(-), 0, 7, 9
punch. The number enclosed in parentheses in the job card (e.g., 5) may have to be in-
creased if several tapes are used. The current label for tape unit 9 is CINDA MASTER,
1,1,999. The other tapes may be unlabeled. Corresponding job request forms are found
in Fig. 7.

40

NRL REPORT 7656

MAGNETIC TAPES
LOGICAL TAPE
UNIT # INPUT OUTPUT SAVE SERIAL NO

9)3 CH X C~KZ 0/A('D,ON EI CX
CG CG ~~Mfst

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NDW-NRL-10462/o00o I5-6e)

SM B45077

(a) Not RECALL (ordinary run)

MAGNETIC TAPES
LOGICAL TAPE
UNIT # INPUT OUTPUT SAVE SERIAL NO9 1 0 0N-A

OO Ovi El

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NDW-NRL-10462/6006 (5-66)

IBM s45077

(c) RECALL

(b) Not RECALL (STOREP run)

(d) RECALL (Re-store new problem)

Fig. 7-Job Request forms (magnetic tape portions)

41

MAGNETIC TAPES
LOGICAL TAPE
UNIT # INPUT OUTPUT SAVE SERIAL NO

7__ NP0 23MSTER

Y aO E X1 X eso

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NOW-NRL-10462/6006 (5-66)

IBM B45077

9 Ii -- __

F- W_ El _

a o1 0 c be

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NDW-NRL-10462/6006 (5-6e)

IBsM 645077

j

MARY E. GEALY

_ FTN, I = 14, L, X

7LIBRARY, 9, LCINDA

BCD 3 END OF DATA

PROBLEM
DATA
DECK

Fig. 8-Ordinary CINDA run

42

NRL REPORT 7656

Not RECALL (Ordinary Run)-(See Fig. 8.)

AJ0B (5),...
AEQUIP, 9= (label), R0, HI, DA
ABANK, (0),/4/
AL0AD, 9
ARUN,t,Q
blank card

problem data deck through BCD 3END 0F DATA

ALIBRARY,9, LCINDA
AFTN, I=14,L,X
AL0AD
binary decks, if any

ARUN,t,Q
E0F

Not RECALL (STOREP run)

AJ0B (5),...
AEQUIP, 9= (label), R0, HI, DA
AEQUIP,40= (label), RW, HI, DA
AEQUIP, 22= (label),W0, HI, DA
ABANK,(O),/4/
AL0AD,9
ARUN,t, 1
blank card

problem data deck through BCD 3END 0F DATA (includes at least one call to
STOREP)

ALIBRARY, 9, LCINDA
AFTN,I=14,L,X= 40
AL0AD,40

binary decks, if any

ARUN,t,2
E0F

43

MARY E. GEALY

RECALL

AJ0B(5),**.
AEQUIP,9=(label),R0,HI,DA
AEQUIP,40=(label),R0,HI,DA
AEQUIP,21=(label),R0,HI,DA

*AEQUIP,22=(label),W0,HI,DA
ABANK,(O),/4/
AL0AD,9
ARUN,t,2
RECALL Card

INITIAL PARAMETERS blocks and BCD 3END 0F DATA

ALIBRARY,9,LCINDA
AL0AD,40

binary decks if any

ARUN,t,k
E0F

For any other options using tapes, the tapes should be equipped as those shown
above, using the appropriate logical unit number and label. The user must also designate
whether the tape is read only (R0), only written on, (W0), or both (RW). In the latter
case, if the tape is written on first, the output block of the job request form is checked.
If the tape is read, then written on, both the input and output blocks should be checked.
(Check the Drum SCOPE manual for more details.)

Plot Package

Table 2 lists the files used in the plot packages.

*Optional-used only if problem is to be restored.

44

NRL REPORT 7656

Table 2

Logical Unit Function

10 Plotting unit

24 Output from TSAVE;
Input to PLOTPREP

25 Output from PLOTPREP;
Input to PLOTT

NOTE: Units 25 and 10 are drum units. Unit 24 is usually a tape,
but can also be a drum unit if the plotting run follows the CINDA
run in the same job.

Below are sample deck sets showing a CINDA run that generates the TSAVE tape,
and a plotting run that uses the TSAVE tape as input. Figure 9 shows a job request
form for the plotting run. Figure 10 displays the deck setup for a combined CINDA and
plotting run.

Not RECALL (Generate TSAVE tape)

AJ0B(5),...
AEQUIP,9=(label),R0,HI,DA
AEQUIP,24=(label),W0,HI,DA
ABANK,(O),/4/
AL0AD,9
ARUN,t,Q
blank card

problem data deck through BCD 3END OF DATA (includes a call to TSAVE
in Output Calls)

ALIBRARY,9,LCINDA
AFTN,I=14,L,X
ALOAD

binary decks, if any

ARUN,t,k
EOF

45

MARY E. GEALY

_ I I~~~~DENTIFICATION)

MAXIMUM TIME THIS JOB MIN

TOTAL # OF PRINT LINES 20
ON RUN CARDS LINES

PUNCHED CARD OUTPUT

PAPER TAPE OUTPUT: APPROX. LENGTH FT

PLOTTER OUTPUT: CHART PAPER c co

NUMBER OF PLOTS ... APPROX. LENGTH _ ___

PAPER TAPE INPUT
TAPE LABELS

MAGNETIC TAPES
LOGICAL TAPE
UNIT B INPUT OUTPUT SAVE SERIAL NO

FX F- IN I TS" 'eE'

SEE REVERSE SIDE FOR ADDITIONAL INSTRUCTIONS
NLW.NC. 104R2/6008 (5.661

IBM B45077

Fig. 9-Sample Job Request form for plot run

Plotting Run

AJ0B
AEQUIP,24=(label),R0,HI,DA

PL0TTEMP
binary deck PL0TPREP }

PL0TT

ARUN,t,1

plotting data

E0F

46

NRL REPORT 7656

with all

control cards

-TSAVE tape; card
needed only if tape
is to be saved

CINDA MASTER tape

Fig. 10-Combined TSAVE and plot run

47

MARY E. GEALY

VIII. ALPHABETIC LISTING OF AVAILABLE SUBROUTINES

Name Page Name Page Name Page

AABB CMPYI D11MDA
ABLATS CNBACK D11MDI
ACSARY CNEXPN D12CYL
ADARIN CNFAST D12MCY
ADD CNFRWD D12MDA
ADDALP CNFWBK D2DEG1
ADDARY C0LMAX D2DEG2
ADDFIX C0LMIN D2D1WM
ADDINV C0LMLT D2D2WM
ALPHAA C0PY D2MXD1
ARCC0S C0SARY D2MXD2
ARCSIN CSGDMP D2MX1M
ARCTAN CSQRI D2MX2M
ARINDV CVQ1HT D3DEG1
ARYADD CVQ1WM D3D1WM
ARYDIV DA1lCY EFACS
ARYEXP DA11MC EFASN
ARYINV DA12CY EFATN
ARYMNS DA12MC EFC0S
ARYMPY DIAG EFEXP
ARYPLS DISAS EFFEMS
ARYST0 DIVARY EFFG
ARYSUB DIVFIX EFL0G
ASNARY DIVIDE EFP0W
ASSMBL DlDEG1 EFSIN
ATNARY D1DEG2 EFSQR
BIT DlDG1I EFTAN
BIVLV DlDlDA ELEADD
BKARAD DlDlIM ELEDIV
BLDARY DlDlMI ELEINV
BRKARY DlDlWM ELEMUL
BTAB D1D2DA ELESUB
BVSPDA DlD2WM ENDM0P
BVSPSA DlMDG1 E0F
CALL D1MDG2 EXPARY
CDIVI DlMlDA EXPNTL
CINC0S DlMlMD FILE
CINDSL DlMlWM FIX
CINDSM D1M2DA FLIP
CINDSS D1M2MD FL0AT
CINSIN DlM2WM GENALP
CINTAN D1lCYI GENARY
CMPXDV D11DAI GENC0L
CMPXMP Dl1DIM GENM
CMPXSR D11MCY GENST

48

NRL REPORT 7656

Name Page Name Page Name Page

GSL0PE PRINT SMPINT
HEDC0L PRINTA SPLIT
INPUTG PRINTL SPREAD
INPUTT PRNTMA SPRESS
INTRFC PRNTMP SQR00T
INVRSE PSINTR SQR0TI
IRRADE PSNTWM STATE
IRRADI PS0FTS STFSEP
ITRATE PUNCH STFSEQ
JAC0BI PUNCHA STFSQS
J0IN PYMLT1 STIFF
LAGRAN QF0RCE STNDRD
LGRNDA QINTEG ST0ARY
LINE QINTGI ST0REP
LIST QMAP SUB
L0GE QMETER SUBARY
L0GEAR QMTRI SUBFIX
L0GT RDTNQS SUMARY
L0GTAR READ SYMINV
LQDVAP REFLCT SYMLST
LSTAPE REWIND TANARY
LSTPCS R0WMLT T0PLIN
LSTSQU RTP0LY TPRINT
MASS SCALAR TRANS
MATRIX SCALE TRNPRT
MAXDAR SCLDEP TRPZDA
MLTPLY SCLIND TRPZD
M0DES SCRPFA TSAVE
MPYARY SETMNS TS0FP
MPYFIX SETPLS UNPAK
MULT SETUP UPDM0P
MXDRAL SHFTV UNITY
NEWRT4 SHFTVR VARCCM
NEWTRT SHIFT VARCSM
0NES SHUFL VARC1
PLYARY SIGMA VARC2
PLYEVL SIMEQN VARGCM
PLYNML SINARY VARGSM
PNTABL SKPLIN VARG1
P0LMLT SLDARD VARG2
P0LS0V SLDARY WRITE
P0LVAL SLRADE WRTARY
P0LYADD SLRADI WRTLO8
PRESS SM0PAS ZER0

49

MARY E. GEALY

Execution Subroutines

Name Page

CINDSS (Steady state, block iteration)
CINDSL (Steady state, accelerated)
CINDSM (Steady state, radiation dominated)
CNFRWD (Explicit forward differencing)
CNFAST (Accelerated forward differencing)
CNEXPN (Explicit exponential prediction)
CNFWBK (Implicit forward-backward differencing)
CNBACK (Implicit backward differencing)

Execution Subroutine CINDSS

Purpose-This subroutine ignores the capacitance values of diffusion nodes to calcu-
late the network steady state solution. Due to the SPCS requirement, diffusion nodes are
solved by a "block" iterative method. However, if all diffusion nodes were specified as
arithmetic nodes they would be calculated by a successive point iterative method. The
user is required to specify the maximum number of iterations to be performed in attempt-
ing to reach the steady state solution (control constant NLOOP) and the relaxation cri-
terion which determines when it has been reached (DRLXCA for diffusion nodes and/or
ARLXCA for arithmetic nodes). The subroutine will continue to iterate until one of the
above criteria is met. If the iteration count exceeds NLOOP, an appropriate message is
printed. Variables 1 and Output Calls are performed at the start and Variables 2 and Out-
put Calls are performed upon completion. If not specified, control constants DAMPD and
DAMPA are set at 1.0. They are used as multipliers times the new temperatures, whereas
1.0 minus their value is used as multipliers times the old temperatures in order to "weight"
the returned answer. This weighting of so much new and so much old is useful for damp-
ing oscillations due to nonlinearities. They may also be used to achieve overrelaxation.

If a series of steady state solutions at various times is desired it can be accomplished
by specifying control constants TIMEND and OUTPUT. OUTPUT will be used both as
the output interval and the computation interval. In this case appropriate calls would
have to be made in Variables 1 to modify boundary conditions with time.

If desired, the CINDSS call can be followed by a call to one of the transient solution
subroutines which has the same SPCS requirement. In this manner the steady state solu-
tion becomes the initial conditions for the transient analysis. However, since CINDSS
utilizes control constants TIMEND and OUTPUT the user must specify their values in the
execution block after the steady state call and prior to the transient analysis call.

Restrictions-The SPCS option is required. Diffusion nodes receive a "block" itera-
tion, while arithmetic nodes receive a successive point iteration; no acceleration features
are utilized. Control constants NLOOP and DRLXCA and/or ARLXCA must be speci-
fied. Successive steady state solutions can be obtained by specifying control constants

50

NRL REPORT 7656

TIMEND and OUTPUT. Other control constants which are activated or used are
LOOPCT, DRLXCC and/or ARLXCC, TIMEN, TIMEM, TIMEO, DAMPD, DAMPA,
DTIMEU, LINECT, and PAGECT. Control constant OPEITR is checked for output each
iteration.

Calling Sequence--CINDSS -This subroutine utilizes one dynamic storage core loca-
tion for each diffusion node.

Execution Subroutine CINDSL

Purpose-This subroutine ignores the capacitance values of diffusion nodes to calcu-
late the network steady state solution. Since this subroutine has the LPCS requirement,
both diffusion and arithmetic nodes receive a successive point iteration. In addition, each
third iteration a linear extrapolation is performed on the error function plot of each node
in an attempt to accelerate convergence. The user is required to specify the maximum
number of iterations to be performed in attempting to reach the steady state solution
(control constant NLOOP) and the relaxation criterion, which determines when it has
been reached (DRLXCA for diffusion nodes and/or ARLXCA for arithmetic nodes). The
subroutine will continue to iterate until one of the above criteria is met. If the iteration
count exceeds NLOOP an appropriate message is printed. Variables 1 and Output Calls
are performed at the start, and Variables 2 and Output Calls are performed upon comple-
tion. If not specified, control constants DAMPD and DAMPA are set at 1.0. They are
used as multipliers times the new temperatures while 1.0 minus their value is used as
multipliers times the old temperatures in order to weight the returned answer. This
weighting of so much new and so much old is useful for damping oscillations due to non-
linearities. They may also be used to achieve overrelaxation.

If a series of steady state solutions at various times is desired it can be accomplished
by specifying control constants TIMEND and OUTPUT. OUTPUT will be used both as
the output interval and the computation interval. In this case appropriate calls would
have to be made in Variables 1 to modify boundary conditions with time.

If desired, the CINDSL call can be followed by a call to one of the transient solution
subroutines which has the same LPCS requirement. In this manner the steady state solu-
tion becomes the initial conditions for the transient analysis. However, since CINDSL
utilizes control constants TIMEND and OUTPUT the user must specify their values in the
execution block after the steady state call and prior to the transient analysis call.

Restrictions-The LPCS option is required. Diffusion and arithmetic nodes receive a
successive point iteration and an extrapolation method of acceleration. Control constants
NLOOP and DRLXCA and/or ARLXCA must be specified. Successive steady state
solutions can be obtained by specifying control constants TIMEND and OUTPUT. Other
control constants which are activated or used are: LOOPCT, DRLXCC, and/or ARLXCC,
TIMEN, TIMEM, TIMEO, DAMPD, DAMPA, DTIMEU, LINECT, and PAGECT. Control
constant OPEITR is checked for output each iteration.

51

MARY E. GEALY

Calling Sequence--CINDSL -This subroutine utilizes two dynamic storage core loca-
tions for each diffusion and arithmetic node.

Execution Subroutine CINDSM

Purpose-This subroutine is designed to calculate the network steady state solution
of moderately radiation-dominated problems. It is similar to CINDSL in that the LPCS
option is required and that all nodes receive a successive point iteration and the same ex-
trapolation method of acceleration. Other execution subroutines evaluate the nonlinear
radiation conductors each time they are encountered during an iteration. CINDSR differs
in that it linearizes the problem by calculating effective radiation conductors and solves
the linearized problem. It then reevaluates the effective radiation conductors, solves the
linear problem and continuously repeats the process. The user must specify the maximum
number of iterations to perform in attempting to reach the steady state solution and the
energy balance of the system to be satisfied as a criterion. This system energy balance is
the difference between all energy into the system and all energy out and is specified as
control constant BALENG. CINDSM internally calculates the iterative relaxation criteria
damping factors and loopings to be performed in solving the linearized problem. It con-
tinuously increases the severity of the relaxation criteria until the BALENG criteria is
met for two successive linearized problems with virtually no temperature change between
the two. Systems with small energy transfer rates to the boundaries are difficult to solve.
A reasonable rule is to set BALENG at 1% of the rate in or out. Successive steady state
analyses may be performed and CINDSM may be followed by a call to a transient analysis
routine with the same LPCS option requirement.

Restrictions-The LPCS option is required. Control constants NLOOP, LAXFAC,
and BALENG must be specified and be greater than zero. DAMPD may be used. If it is
not specified, the routine will set DAMPD to 1.0. Successive steady state solutions can
be obtained by specifying control constants TIMEND and OUTPUT. Other control con-
stants which are activated or used are LOOPCT, ENGBAL, and/or ARLXCC, TIMEN,
TIMEM, TIMEO, DTIMEU, LINECT, and PAGECT. Control constant OPEITR is checked
for output each iteration. Caution: Each radiation conductor must have a unique con-
ductor number.

Calling Sequence--CINDSM -This subroutine utilizes three dynamic storage core
locations for each diffusion and arithmetic node and one more for each radiation con
conductor.

Execution Subroutine CNFRWD

Purpose-This subroutine performs transient thermal analysis by the explicit forward-
differencing method. The stability criterion of each diffusion node is calculated and the

52

NRL REPORT 7656

minimum value is placed in control constant CSGMIN. The time step used (control con-
stant DTIMEU) is calculated as 95% of CSGMIN divided by CSGFAC. Control constant
CSGFAC is set at 1.0 unless specified larger by the user. A "look-ahead" feature is used
when calculating DTIMEU. If one time step will pass the output time point, the time
step is set to come out exactly on the output time point; if two time steps will pass the
output time point, the time step is set so that two time steps will come out exactly on
the output time point. DTIMEU is also compared to DTIMEH and DTIMEL. If DTIMEU
exceeds DTIMEH it is set equal to it, if DTIMEU is less than DTIMEL the problem is
terminated. If no input values are specified, DTIMEL is set at zero and DTIMEH it is
set at infinity. The maximum temperature change calculated over an iteration is placed
in control constant DTMPCC and/or ATMPCC. They are compared to DTMPCA and/or
ATMPCA, respectively, and if larger cause DTIMEU to be modified so that they com-
pare as equal to or less than DTMPCA and/or ATMPCA. If DTMPCA and/or ATMPCA
are not specified they are set at infinity.

All diffusion nodes are calculated prior to solving the arithmetic nodes. The user
may iterate the arithmetic node solution by specifying control constants NLOOP and
ARLXCA. If the arithmetic node iteration count exceeds NLOOP, the answers are ac-
cepted as is and the subroutine continues without any user notification. In addition the
user may specify control constant DAMPA in order to dampen possible oscillations due
to nonlinearities. The arithmetic nodes may be used to specify an incompressible pressure
or radiosity network. In this manner they would be solved implicitly each time step, but
evaluation of temperature varying properties would suffer a lag of one time step.

Restrictions-The SPCS option is required and control constants TIMEND and
OUTPUT must be specified. Problem start time if other than zero may be specified as
TIMEO. Other control constants used or activated are: TIMEN, TIMEM, CSGMIN,
CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC,
NLOOP, LOOPCT, DAMPA, ARLXCA, ARLXCC, OPEITR, BACKUP, LINECT, and
PAGECT.

Calling Sequence-CNFRWD -This subroutine utilizes one dynamic storage core
location for each diffusion and arithmetic node.

Execution Subroutine CNFAST

Purpose-This subroutine is a modified version of CNFRWD which allows the user
to specify the minimum time step to be taken. The time step calculations proceed ex-
actly as in CNFRWD until the check with DTIMEL is made. If DTIMEU is less than
DTIMEL it is set equal to it. As each node is calculated its CSGMIN is obtained and
compared to DTIMEU. If equal to or greater, the nodal calculation is identical to
CNFRWD. If the CSGMIN for a node is less than DTIMEU the node receives a steady
state calculation. If only a small portion of the nodes in a system receive the steady
state calculation the answers are generally reasonable. However, as the number of nodes
receiving steady state calculations increases, so do the solution inaccuracies.

53

MARY E. GEALY

Restrictions-The SPCS option is required and control constants TIMEND and
OUTPUT must be specified. The checks on control constants DTMPCA, ATMPCA and
BACKUP are not performed. Other control constants which are used or activated are
TIMEN, TIMEM, TIMEO, CSGMIN, CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCC,
ATMPCC, DAMPA, ARLXCA, ARLXCC, NLOOP, LOOPCT, LINECT, and PAGECT.

Calling Sequence-CNFAST -This subroutine utilizes one dynamic storage core
location for each diffusion node.

Execution Subroutine CNEXPN

Purpose-This subroutine performs transient thermal analysis by the exponential
prediction method, and the solution equation is of the following form:

T () (- Ie + Tie i

This equation is unconditionally stable, no matter what size time step is taken, and it re-
duces to the steady state equation for an infinite time step. However, stability is not to
be confused with accuracy. Time steps larger than would be taken with CNFRWD re-
main stable but tend to lose or gain energy in the system. For this reason this subroutine
is not recommended where accuracy is sought. However, it is suitable for parametric
analysis where trends are sought and a more accurate method will be utilized for a final
analysis.

The inner workings of the subroutine are virtually identical to CNFRWD with the
exception of the solution equation and the use of CSGFAC. The time step used
(DTIMEU) is calculated as CSGMIN times CSGFAC. The look-ahead feature for calcu-
lating the time step is identical, as are the checks with DTIMEH, DTIMEL, and DTMPCA.
The diffusion nodes are calculated prior to the arithmetic nodes, and the arithmetic nodes
utilize NLOOP, ARLXCA, and DAMPA, exactly the same as CNFRWD.

Restrictions-The SPCS option is required and control constants TIMEND and
OUTPUT must be specified. Problem start time if other than zero may be specified as
TIMEO. Other control constants used or activated are TIMEN, TIMEM, CSGMIN,
CSGFAC, DTIMEU, DTIMEL, DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC,
ARLXCA, ARLXCC, DAMPA, OPEITR, BACKUP, LINECT, and PAGECT.

Calling Sequence-CNEXPN -This subroutine utilizes one dynamic storage core
location for each diffusion and arithmetic node.

54

NRL REPORT 7656

Execution Subroutine CNFWBK

Purpose-This subroutine performs transient thermal analysis by implicit forward-
backward differencing. The LPCS option is required and allows the simultaneous set of
equations to be solved by "successive point" iterations. During the first iteration for a
time step, the capacitance values are doubled and divided by the time step and the energy
transfer rates based on old temperatures are added to the source locations. Upon com-
pleting the time step the capacitance values are returned to their original state. The itera-
tion looping, convergence criteria and other control constant checks are identical to
CNBACK. The time step checks and calculations and look ahead feature are identical to
that used for CNBACK.

The automatic radiation transfer damping and extrapolation method of acceleration
mentioned under the CNBACK subroutine writeup are also employed in this subroutine.
Diffusion and/or arithmetic temperature calculations may be damped through use of
DAMPD and/or DAMPA respectively. Control constants BACKUP and OPEITR are con-
tinuously checked. CNFWBK internally performs forward-backward differencing of
boundary conditions. For this reason the user should utilize TIMEN as the appropriate
independent variable in Variables 1 operations.

It is interesting to note that CNFWBK generally converges in 25% fewer iterations
than CNBACK. The probable reason for this is that the boundary of the mathematical
system is better defined. While every future temperature node under CNBACK is con-
nected to its present temperature, under CNFWBK every future temperature node is also
receiving an impressed source based on the present temperature.

Restrictions-The LPCS option is required. Control constants TIMEND, OUTPUT,
DTIMEI, NLOOP and DRLXCA and/or ARLXCA must be specified. Other control con-
stants which are used or activated are TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEU,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or
ARLXCC, LOOPCT, BACKUP, OPEITR, LINECT, and PAGECT.

Calling Sequence-CNFWBK -This subroutine utilizes three dynamic storage core
locations for each diffusion node and one for each arithmetic and boundary node.

Execution Subroutine CNBACK

Purpose-This subroutine performs transient thermal analysis by implicit backward
differencing. The LPCS option is required and allows the simultaneous set of equations
to be solved by "successive point" iteration. Each third iteration, diffusion node tempera-
tures which trace a continuous decreasing slope receive an extrapolation on their error
function curve in an attempt to accelerate convergence. For convergence criteria the user
is required to specify NLOOP and DRLXCA and/or ARLXCA. If the number of itera-
tions during a time step exceeds NLOOP a message is printed but the problem proceeds.

55

MARY E. GEALY

Variables 1 is performed only once for each time step. Since this subroutine is im-
plicit the user must specify the time step to be used as DTIMEI in addition to TIMEND
and OUTPUT. The look ahead feature for the time step calculation in CNFRWD is used
as are the checks for DTIMEH, DTMPCA and ATMPCA but not DTIMEL. Damping of
the solutions can be achieved through use of control constants DAMPD and/or DAMPA.
Control constants BACKUP and OPEITR are continuously checked.

Implicit methods of solution often oscillate at start up or for boundary step changes
when radiation conductors are present. CNBACK contains an automatic damping feature
which is applied to radiation conductors. The radiation transfer to a node is calculated
for its present temperature and a temporary new temperature is calculated. Then the
radiation transfer is recalculated and the final node temperature is calculated based on
the arithmetic mean of the two radiation transfer calculations. This automatic radiation
damping has proven to be quite successful and lessens the need for use of DAMPD and
DAMPA.

Restrictions-The LPCS option is required. Control constants TIMEND, OUTPUT,
DTIMEI, NLOOP and DRLXCA and/or ARLXCA must be specified. Other control con-
stants which are used on activated are: TIMEN, TIMEO, TIMEM, CSGMIN, DTIMEV,
DTIMEH, DTMPCA, DTMPCC, ATMPCA, ATMPCC, DAMPD, DAMPA, DRLXCC and/or
ARLXCC, LOOPCT, BACKUP, OPEITR, LINECT, and PAGECT.

Calling Sequence-CNBACK -This subroutine utilizes three dynamic storage core
locations for each diffusion node and one for each arithmetic and boundary node.

56

NRL REPORT 7656

Interpolation Subroutines

Name Page

LAGRAN, LGRNDA, DlDEG1, DlDlDA, DlDlWM, D11MDA 58
D1MDG1, DlMlDA, DlMlWM, DlM1MD, D1DEG2. D1D2DA
DlD2WM, D12MDA 59
D1MDG2, D1M2DA, DlM2WM, D1M2MD, DlDGlI, DlDlIM, DlDlMI, DllDAI,
DllDIM, DllMDI 60
DllCYL, DAllCY, D12CYL, DA12CY, Dl1MCY, DA11MC,
D12MCY, DA12MC 61
CVQ1HT, CVQ1WM, GSL0PE, PSINTR, PSNTWM 62
Bivariate Array Format, BVSPSA, BVSPDA, BVTRN1, BVTRN2
D2DEG1, D2DEG2, D2D1WM, D2D2WM 63
D2MXD1, D2MXD2, D2MX1M, D2MX2M,
Trivariate Array Format .. 64
D3DEG1, D3D1WM, VARCSM, VARCCM, VARC1, VARC2 65
VARGSM, VARGCM, VARG1, VARG2 66

57

MARY E. GEALY

Subroutine LAGRAN or LGRNDA

Purpose-These subroutines perform Lagrangian interpolation of up to order 50. The
first requires one doublet array of X, Y pairs while the second requires two singlet arrays,
one of X's and the other of Y's. They contain an extrapolation feature such that if the
X value falls outside the range of the independent variable the nearest dependent Y vari-
able value is returned and no error is noted.

n n X-xi

Y Pn(X) L Yk 7 X - r. = 1,2,3,...,50max.
k=O i=O

i7 k

Restrictions-All values must be floating point except N which is the order of inter-
polation plus one and must be an integer. The independent variable values must be in
ascending order.

Calling Sequence-LAGRAN(X,Y,A(IC),N) or LGRNDA(X,Y,AX(IC),AY(IC),N)

NOTE: A doublet array is formed as follows:

IC, X1, Y1, X2, Y2, X3, Y3,..., XN, YN
where IC = 2*N (set by program).

Singlet arrays are formed as follows:

IC, X1, X2, X3, ... ,XN
IC, Y1, Y2, Y3,..., YN
and IC = N (set by program).

Subroutine DiDEG1 or D1D1DA

Purpose-These subroutines perform single variable linear interpolation on doublet or
singlet arrays respectively. They are self-contained subroutines that are called upon by
virtually all other linear interpolation subroutines.

Restrictions-All values must be floating point numbers. The X independent variable
values must be in ascending order.

Calling Sequence-D1DEG1(X,A(IC),Y) or DID1DA(X,AX(IC),AY(IC),Y)

Subroutine DlDlWM or D11MDA

Purpose-These subroutines perform single-variable, linear interpolation by calling on
DlDEG1 or DlDlDA, respectively. However, the interpolated answer is multiplied by
the value addressed as Z prior to being returned as Y.

58

NRL REPORT 7656

Restrictions-Same as D1DEGI or D1D1DA, and Z must be a floating-point number.

Calling Sequence-D1D1WM(X,A(IC),Z,Y) or D11MDA(X,AX(IC),AY(IC),Z,Y)

Subroutine D1MDG1 or D1M1DA

Purpose-These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two singlet arrays,
respectively.

Restrictions-See D1DEGI or DID1DA as they are called on, respectively.

Calling Sequence-DIMDG1(Xl,X2,A(IC),Y) or
D1M1DA(X1,X2,AX(IC),AY(IC),Y)

Subroutine D1M1WM or DlM1MD

Purpose-These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is multiplied by the Z
value prior to being returned as Y.

Restrictions-Same as D1MDG1 or D1MiDA, and Z must be a floating-point number.

Calling Sequence-DlMlWM(X1,X2,A(IC),Z,Y) or
D1M1MD(X1,X2,AX(IC),AY(IC),Z,Y)

Subroutine D1DEG2 or D1D2DA

Purpose-These subroutines perform single-variable parabolic interpolation. The first
requires a doublet array of X, Y pairs while the second requires singlet arrays of X and
Y values. They call on subroutines LAGRAN and LGRNDA, respectively.

Restrictions-See LAGRAN or LGRNDA.

Calling Sequence-DIDEG2(X,A(IC),Y) or D1D2DA(X,AX(IC),AY(IC),Y)

Subroutine DlD2WM or D12MDA

Purpose-These subroutines perform single-variable parabolic interpolation by calling
on LAGRAN or LGRNDA, respectively. However, the interpolated answer is multiplied
by the value addressed as Z prior to being returned as Y.

Restrictions-Same as LAGRAN or LGRNDA, and Z must be a floating-point
number.

59

MARY E. GEALY

Calling Sequence-D1D2WM(X,A(IC),Z,Y) or
D12MDA(X,AX(IC),AY(IC),Z,Y)

Subroutine D1MDG2 or D1M2DA

Purpose-These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. They require a doublet or two singlet arrays,
respectively.

Restrictions-See LAGRAN or LGRNDA as they are called.

Calling Sequence-D1MDG2(X1,X2,A(IC),Y) or
D1M2DA(X1,X2,AX(IC),AY(IC),Y)

Subroutine DlM2WM or D1M2MD

Purpose-These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. The interpolated answer is multiplied by the
Z value prior to being returned as Y.

Restrictions-Same as D1MDG2 or D1M2DA, and Z must be a floating point number.

Calling Sequence-DlM2WM(X1,X2,A(IC),Z,Y) or
D1M2MD(X1,X2,AX(IC),AY(IC),Z,Y)

Subroutine DlDG1I or D1DlIM or D1D1MI

Purpose-These subroutines perform single-variable linear interpolation on an array
of X's to obtain an array of Y's. DlDlIM multiplies all interpolated values by a constant
Z value while D1D1MI allows a unique Z value for each X value. They all call on
DIDEG1.

Restrictions-The number of input X's must be supplied as the integer N and agree
with the number of Y and Z locations where applicable. Z values must be floating-point
numbers.

Calling Sequence-DlDG1I(N,X(DV),A(IC),Y(DV)) or
D1D1IM(N,X(DV),A(IC),Z,Y(DV)) or
DlDlMI(N,X(DV),A(IC),Z(DV),Y(DV))

Subroutine Dl1DAI or Dl1DIM or D11MDI

Purpose-These subroutines are virtually identical to DlDG1I, DlDlIM, and D1D1MI,
respectively. The difference is that they require singlet arrays for interpolation and call
on D1D1DA.

60

NRL REPORT 7656

Restrictions-Same as D1DG1I, DiDlIM, and DlDlMI.

Calling Sequence-D1 lDAI(N,X(DV),AX(IC),AY(IC),Y(DV)) or
D11DIM(N,X(DV),AX(IC),AY(IC),Z,Y(DV)) or
D1lMDI(N,X(DV),AX(IC),AY(IC),Z(DV),Y(DV))

Subroutine Dl1CYL or DA1lCY

Purpose-These subroutines reduce core storage requirements for cyclical interpola-
tion arrays. The arrays need cover one period only, and the period (PR) must be speci-
fied as the first argument. Linear interpolation is performed, and the independent variable
must be in ascending order.

Restrictions-All values must be floating point. Subroutine INTRFC is called on by
both Dl1CYL and DAliCY, then DiDEG1 or D1D1DA, respectively.

Calling Sequence-DIICYL(PR,X,A(IC),Y) or
DA11CY(PR,X,AX(IC),AY(IC),Y)

Subroutine D12CYL or DA12CY

Purpose-These subroutines are virtually identical to Dl1CYL and DAliCY, except
that parabolic interpolation is performed.

Restrictions-See D11CYL and DAliCY. Subroutines LAGRAN and LGRNDA,
respectively, are called on.

Calling Sequence-D12CYL(PR,X,A(IC),Y) or DA12CY(PR,X,AX(IC),AY(IC),Y)

Subroutine D11MCY or DA11MC

Purpose-These subroutines are virtually identical to Dl1CYL or DAliCY, except
that the interpolated answer is multiplied by the floating-point Z value prior to being
returned as Y.

Restrictions-Call on subroutines DIDEGI and D1D1DA, respectively.

Calling Sequence-Dl1MCY(PR,X,A(IC),Z,Y) or
DA11MC(PR,X,AX(IC),AY(IC),Z,Y)

Subroutine D12MCY or DA12MC

Purpose-These subroutines are virtually identical to D11MCY and DA11MC except
that parabolic interpolation is performed.

61

MARY E. GEALY

Restrictions-Calls on subroutines LAGRAN and LGRNDA, respectively.

Calling Sequence-D12MCY(PR,X,A(IC),Z,Y) or
DA12MC(PR,X,AX(IC),AY(IC),Z,Y)

Subroutine CVQ1HT or CVQ1WM

Purpose-These subroutines perform two single-variable linear interpolations. The
interpolation arrays must have the same independent variable X and dependent variables
of, say, R(X) and S(X). Additional arguments of Y, Z, and T complete the data values.
The postinterpolation calculations are, respectively:

Y = S(X)*(R(X)-T) or

Y = Z*S(X)(R(X)-T).

Restrictions-Interpolation arrays must be of the doublet type and have a common
independent variable. All values must be floating-point numbers.

Calling Sequence-CVQlHT(X,AR(IC) ,AS(IC),T,Y) or
CVQ1WM(X,AR(IC),AS(IC),T,Z,Y)

Subroutine GSLOPE

Purpose-This subroutine will generate a slope array so that point slope interpolation
subroutines can be used instead of standard linear interpolation subroutines. The user
must address two singlet arrays, and a singlet slope array will be produced.

Restrictions-The X independent-variable array must be in ascending order. All ar-
rays must be of equal length and contain floating-point numbers.

Calling Sequence-GSLOPE(AX(IC),AY(IC),AS(IC))

Subroutine PSINTR or PSNTWM

Purpose-These subroutines perform linear interpolation and require arrays of the Y
points and slopes which correspond to the independent variable X array. All values must
be floating-point numbers. PSNTWM multiplies the interpolated answer by Z prior to
returning it as Y.

Restrictions-The independent X and dependent Y and slope arrays must be of
equal length.

Calling Sequence-PSINTR(X,AX(IC),AY(IC),AS(IC),Y) or
PSNTWM(X,AX(IC),AY(IC),AS(IC),Z,Y)

62

NRL REPORT 7656

Bivariate Array Format, Z = f(X,Y)

Bivariate arrays must be rectangular and full and must be entered in the following
row order:

IC,N ,X 1,X 2,X 3, ... ,X N
Y1, Z11, Z12, Z13, ... , Z1N
Y2, Z21, Z22, Z23, ... , Z2N

YM,ZM1,ZM2,ZM3, ... ,ZMN

where N is the integer number of X variables. All other values must be floating-point num-
bers, and the X and Y values must be in ascending order.

Subroutine BVSPSA or BVSPDA

Purpose-These subroutines use an input Y argument to address a bivariate array and
pull off a singlet array of Z's corresponding to the X's or pull off a doublet array of X, Z
values, respectively. The integer count for the constructed arrays must be exactly N or 2*N,
respectively. To use the singlet array for an interpolation call, reach the X array by address-
ing the N in the bivariate array.

Restrictions-As stated above, and all values must be floating point.

Calling Sequence-BVSPSA(Y,BA(IC),AZ(IC)) or BVSPDA(Y,BA(IC),AXZ(IC))

Subroutine D2DEG1 or D2DEG2

Purpose-These subroutines perform bivariate linear and parabolic interpolation, re-
spectively. The arrays must be formatted as shown for Bivariate Array Format.

Restrictions-For D2DEG1, N > 2, M > 21 See bivariate
For D2DEG2, N > 3, M > 3J array format

Calling Sequence-D2DEG1(X,Y,BA(IC),Z) or D2DEG2(X,Y,BA(IC),Z)

Subroutine D2D1WM or D2D2WM

Purpose-These subroutines perform bivariate linear or parabolic interpolation by
calling on D2DEG1 or D2DEG2, respectively. The interpolated answer is multiplied by
the W value prior to being returned as Z.

Restrictions-Same as D2DEG1 or D2DEG2, and W must be a floating-point value.

Calling Sequence-D2D1WM(X,Y,BA(IC),W,Z) or D2D2WM(X,Y,BA(IC),W,Z)

63

MARY E. GEALY

Subroutine D2MXD1 or D2MXD2

Purpose-These subroutines are virtually identical to D2DEG1 and D2DEG2 except
that the arithmetic mean of two X values is used as the X-independent variable for
interpolation.

Restrictions-Same as D2DEG1 or D2DEG2.

Calling Sequence-D2MXD1(X1,X2,Y,BA(IC),Z) or D2MXD2(X1,X2,YBA(IC),Z)

Subroutine D2MX1M or D2MX2M

Purpose-These subroutines are virtually identical to D2D1WM and D2D2WM except
that the arithmetic mean of two X values is used as the X-independent variable for
interpolation.

Restrictions-Same as D2D1WM and D2D2WM.

Calling Sequence-D2MXlM(X1,X2,Y,BA(IC),W,Z) or
D2MX2M(X1,X2,Y,BA(IC),W,Z)

Trivariate Array Format, T = f(X,Y,Z)

Trivariate arrays may be thought of as two or more bivariate arrays, each bivariate
array a function of a third independent variable Z. Trivariate arrays must be entered in
row order and be constructed as follows:

IC,NX1,NY1, Z1,X 1,X 2,X 3, ... , X N
Y1, T11, T12, T13, . . , T1N
Y2, T21, T22, T23, ... , T2N

YM,TM1,TM2,TM3,... ,TMN
NX2,NY2, Z2, X 1, X 2, X 3,..., X J

Y1, T11, T12, T13, . . ., T1J
Y2, T21, T22, T23, ... , T2J

YK, TK1, TK2, TK3,..., TKJ
NX3,NY3, Z3,

The trivariate array may consist of as many bivariate "sheets" as desired. The num-
ber of X and Y values in each sheet must be specified as integers (NX-NY). The "sheets"
must be rectangular and full but need not be identical in size.

64

NRL REPORT 7656

Subroutine D3DEG1 or D3D1WM

Purpose-These subroutines perform trivariate linear interpolation. The interpolation
array must be constructed as shown for the Trivariate Array Format. Subroutine D2DEG1
is called on, which calls on DIDEG1. Hence, the linear extrapolation feature of these
routines applies. Subroutine D3D1WM multiplies the interpolated answer by F prior to
returning it as T.

Restrictions-See Trivariate Array Format. F must be a floating-point value.

Calling Sequence-D3DEG1(X,Y,Z,TA(IC),T) or D3DlWM(X,Y,Z,TA(IC),F,T)

Subroutine VARCSM or VARCCM or VARC1 or VARC2

Purpose-These are linear interpolation subroutines which are set up as Variables 1
calls by the preprocessor when processing the CGS and CGD mnemonic codes in the nodal
data block. VARCSM is utilized for the CGS code. VARCCM is utilized for the CGD
code when two array arguments appear. VARCi and VARC2 are used for the CGD code
when either the first or second respective array arguments are entered as a constant. The
following mnemonic codes in the nodal block

8

CGS 1,80.,AI,10.2
CGD 2,80.,AI,10.2,A2,1.6
CGD 3,80.,1.4,5.1,A2,1.6
CGD 4,80.,AI,5.1,6.3,8.7

would cause the construction in Variables 1 of

12

VARCSM(TI,CI,AI,10.2)
VARCCM(T2,C2,AI,10.2,A2,1.6)
VARCI(T3,C3,1.4,5..1,A2,1.6)
VARC2(T4,C4,AI,5.1,6.3,8.7)

The second call causes the sum of two interpolations with multiplications to be used as
the C2 value. The latter two calls only perform one interpolation but use the sum of the
two products as the C value.

Restrictions-The array arguments must address the integer count.

Calling Sequence-VARCSM(T,C,A(IC),F) or VARCCM(T,C,A1(IC),F1,A2(IC),F2) or
VARC1(T,C,X,F1,A2(IC),F2) or VARC2(T,C,A1(IC),F1,X,F2)

65

MARY E. GEALY

Subroutine VARGSM or VARGCM or VARG1 or VARG2

Purpose-These are linear interpolation subroutines set up as Variables 1 calls by the
preprocessor when processing the CGS and CGD mnemonic codes in the conductor data
block. They are similar to the preceding four calls for the nodal data block except that
the conductor argument is first followed by two temperature arguments. VARGSM is
used for the CGS code. If the F value is positive, the mean of the two addressed tem-
peratures is used for interpolation. If it is negative, only T1 is used for interpolation and
the absolute value of F is used as a multiplier. VARGCM, VARG1, and VARG2 per-
form the one or two interpolations required, multiply by the F values to obtain G1 and
G2 components, and then calculate G as

G = 1.0/(1.0/G1 + 1.0/G2).

Restrictions-The array arguments must address the integer count.

Calling Sequence-VARGSM(G,T1,T2,A(IC),F) or
VARGCM(G,T1,T2,A1(IC),F1,A2(IC),F2) or
VARG1(G,T1,T2,X,F1,A2(IC),F2) or
VARG2(G,T1,T2,A1(IC),F1,X,F2)

66

NRL REPORT 7656

Arithmetic Subroutines

Name Page

FL0AT, FIX, INTRFC, SHFTV, SHFTVR, FLIP,
SETPLS, ARYPLS 68
SETMNS, ARYMNS, ADD, ADDFIX, ADDARY, ARYADD 69
SUB, SUBFIX, SUBARY, ARYSUB, MLTPLY, MPYFIX,
MPYARY, ARYMPY 70
DIVIDE, DIVFIX, DIVARY, ARYDIV, GENARY .71
BLDARY, BRKARY, BKARAD, STFSEP, SCALE 72
STFSEQ, STFSQS, SUMARY, MAXDAR, MXDRAL .73
ARYINV, ARINDV, ADDINV, ADARIN, ST0ARY, ARYST0 .74
SCLDEP, SCLIND, SLDARY, SLDARD, SPLIT, J0IN .75
SPREAD, QMETER, RDTNQS, QMTRI, QF0RCE, QINTEG,
QINTGI 76
CINSIN, SINARY, CINC0S, C0SARY, CINTAN, TANARY,
ARCSIN, ASNARY 77
ARC0S, ACSARY, ARCTAN, ATNARY, EXPNTL,
ARYEXP, EXPARY ... 78
L0GT, L0GTAR, L0GE, L0GEAR, SQR00T, SQR0TI, CMPXSR,
CSQRI 79
CMPXMP, CMPYI, CMPXDV, CDIVI, NEWTRT, NEWRT4. 80
PLYNML, PLYARY, SMPINT, TRPZD, TRPZDA 81
PRESS, SPRESS, EFFG, EFFEMS 82

67

MARY E. GEALY

Subroutine FLOAT or FIX or INTRFC

Purpose-Subroutine FLOAT will convert an integer to a floating-point number.
Subroutine FIX will convert a floating-point number to an integer. Subroutine INTRFC
will fracture a floating-point number to yield the largest integer value possible and the
remainder or fractional portion is a floating-point number. Their respective operations
are

X =N
or N X
or N X

Y =N
F =X-Y

Restrictions-X and F arguments must address floating-point values and the N argu-
ment must address an integer.

Calling Sequence-FLOAT(N,X) or FIX(X,N) or INTRFC(X,N,F)

Subroutine SHFTV or SHFTVR or FLIP

Purpose-Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place it in another
array in reverse order. Subroutine FLIP will reverse an array in its own array location.
Their respective operations are

A(i) = B(i), i =1, N
or A(N-i+1) = B(i), i = 1, N
or A(i)new = A(N-i+ 2)Old, i = 2, N+1.

The answer array may not be overlayed into the input array.

Restrictions-The data values to be shifted or reversed in order may be anything.
The N must be an integer.

Calling Sequence-SHFTV(N,B(DV),A(DV)) or SHFTVR(N,B(DV),A(DV)) or
FLIP(A(IC))

Subroutine SETPLS or ARYPLS

Purpose-SETPLS will set the sign positive for a variable number of arguments while
ARYPLS will set the sign positive for every data value in a specified length array.

Restrictions-The values addressed may be either integers or floating-point numbers.
The number (N) of data values in the array must be specified as an integer.

68

NRL REPORT 7656

Calling Sequence-SETPLS(A,B,C ...) or ARYPLS(N,A(DV))

where N may be a literial integer or the address of a location containing an integer, and
A(DV) addresses the first data value in the array.

Subroutine SETMNS or ARYMNS

Purpose-SETMNS will set the sign negative for a variable number of arguments,
while ARYMNS will set the sign negative for every data value in a specified length array.

Restrictions-The values addressed may be either integers or floating-point numbers.
The number (N) of data values in the array must be specified as an integer.

Calling Sequence-SETMNS(A,B,C,...) or ARYMNS(N,A(DV))

where N may be a literial integer or the address of a location containing an integer and
A(DV) addresses the first data value in the array.

Subroutine ADD or ADDFIX

Purpose-To sum a variable number of floating-point or integer numbers, respectively.

S = EXx, i = 1, 2, 3,..., N. N > 2

Restrictions-Subroutine ADD is for floating-point numbers, while subroutine
ADDFIX is for integers.

Calling Sequence-ADD(X1,X2,X3,. . . ,XN,S) or ADDFlX(X1,X2,X3,... ,XN,S)

Subroutine ADDARY or ARYADD

Purpose-Subroutine ADDARY will add the corresponding elements of two specified
length arrays to form a third array. Subroutine ARYADD will add a constant value to
every element in an array to form a new array. Their respective operations are

Ai = Bi + Ci, i = 1, N
or Ai = Bi + C, i = 1, N.

The answer array may be overlayed into one of the input array areas.

Restrictions-All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence-ADDARY(N,B(DV),C(DV),A(DV)) or
ARYADD(N,B(DV),C,A(DV))

69

MARY E. GEALY

Subroutine SUB or SUBFIX

Purpose-To subtract a variable number of floating-point or integer numbers,
respectively,

R = Y - E Xi, i = 1, 2, 3, ... , N. N > 1

Restrictions-Subroutine SUB is for floating-point numbers while subroutine SUBFIX
is for integers.

Calling Sequence-SUB(Y,X1,X2,X3,... ,XN,R) or
SUBFIX(Y,X1,X2,X3, ... ,XN,R)

Subroutine SUBARY or ARYSUB

Purpose-Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a constant value
from every element in an array to form a new array. Their respective operations are

Ai = Bi - Ci, i = 1, N
or Ai = Bi - C, i = 1, N

The answer array may be overlayed into one of the input array areas.

Restrictions-All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence-SUBARY(N,B(DV),C(DV),A(DV)) or
ARYSUB(N,B(DV),C,A(DV))

Subroutine MLTPLY or MPYFIX

Purpose-To multiply a variable number of floating-point or integer numbers,
respectively.

P = X1 * X2 * X3 *...*XN, N > 2

Restrictions-Subroutine MLTPLY is for floating-point numbers, while subroutine
MPYFIX is for integers.

Calling Sequence-MLTPLY(X1,X2,X3, . . . ,XN,P) or MPYFIX(X1,X2,X3, . . ., XN,P)

Subroutine MPYARY or ARYMPY

Purpose-Subroutine MPYARY will multiply the corresponding elements of two
arrays to form a third. Subroutine ARYMPY will multiply a constant value times each
element of an array to form a new array. Their respective operations are

70

NRL REPORT 7656

A =Bi*Ci, i=1,N
orAi=Bi*C, i=1, N

The answer array may be overlayed into one of the input array areas.

Restrictions-All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Sequence-MPYARY(N,B(DV),C(DV),A(DV)) or
ARYMPY(N,B(DV),C,A(DV))

Subroutine DIVIDE or DIVFIX

Purpose-These subroutines are used to perform a division of floating-point or inte-
ger numbers, respectively;

Q = Y/1XX, i = 1, 2, 3, ... ,N, N > 1.

Restrictions-Subroutine DIVIDE is for floating-point numbers, while DIVFIX is for
integers.

Calling Sequence-DIVIDE(Y,X1,X2,X3, ... ,XN,Q) or
DIVFIX(Y,X1,X2,X3, ... ,XN,Q)

Subroutine DIVARY or ARYDIV

Purpose-Subroutine DIVARY will divide the elements of one array into the corre-
sponding elements of another array to produce a third array. Subroutine ARYDIV will
divide each element of an array by a constant value to produce a new array. Their re-
spective operations are

Ai = Bi/Ci, i = 1, N
or Ai = Bk/C, i= 1, N.

The answer array may be overlayed into one of the input array areas.

Restrictions-All data values to be operated on must be floating-point numbers. The
array length N must be an integer.

Calling Seq uence-DIVARY(N,B(DV),C(DV),A(DV)) or
ARYDIV(N,B(DV),C,A(DV))

Subroutine GENARY

Purpose-This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number of values in
the array to be generated, and the space for the generated array.

71

MARY E. GEALY

Restrictions-All numbers must be floating point.

Calling Sequence--GENARY(B(DV),A(DV))

where

B(1) = minimum value
B(2) = maximum value
B(3) = length of array to be generated (floating point).

Subroutine BLDARY

Purpose-This subroutine will build an array from a variable number of arguments in
the order listed. The operation performed is

Ai = Xi, i = 1, N.

Restrictions-Data may be of any form. The subroutine obtains the integer array
length N by counting the arguments.

Calling Sequence-BLDARY(A(DV),X1,X2,X3, ... ,XN)

Subroutine BRKARY or BKARAD

Purpose-These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value into the location
while the second adds it to what is in the location. Respective operations are

Xi = Ai, i =1, N
or Xi = Xi + Ai, i= 1, N.

Restrictions-Floating-point numbers must be used for BKARAD. The integer array
length N is obtained by the routines by counting the number of arguments.

Calling Sequence-BRKARY(A(DV),X1,X2,X3, ... ,XN) or
BKARAD(A(DV),X1,X2,X3,...,XN)

Subroutine STFSEP or SCALE

Purpose-Subroutine STFSEP will place a constant value into a variable number of
locations. Subroutine SCALE will utilize a constant value to multiply a variable number
of arguments, each having a location for the product. The respective operations are

Xi = Y, i = 1, 2, 3, N
orXi=Y*Zi, i =1,2,3, ...,N.

72

NRL REPORT 7656

Restrictions-STFSEP may be used to move any desired value, but SCALE can only
be used for floating-point numbers.

Calling Sequence-STFSEP(Y,X1,X2,X3, ... ,XN) or
SCALE(Y,X1,Z1,X2,Z2, ... ,XN,ZN)

Subroutine STFSEQ or STFSQS

Purpose-Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant data value to be in
the first array location, while STFSQS requires it to be supplied as an additional argu-
ment. The respective operations performed are

Ai = Al, i= 2, N
or Ai = B, i = 1, N.

Restrictions-N must be an integer, but the constant data value may be integer, either
floating point or alphanumeric.

Calling Sequence-STFSEQ(A(DV),N) or STFSQS(B,N,A(DV))

Subroutine SUMARY

Purpose-SUMARY is used to sum an array of floating-point values:

S = Ai, i = 1, N.

Restrictions-The values to be summed must be floating-point numbers and the array
length N must be an integer.

Calling Sequence-SUMARY(N,A(DV),S)

Subroutine MAXDAR or MXDRAL

Purpose-These subroutines will obtain the absolute maximum difference between
corresponding elements of two arrays of equal length N. The array values must be
floating-point numbers. The operation performed is

D = Ai - Bilmax; i =1, N.

Subroutine MXDRAL also locates the position P between 1 and N where the maximum
occurs.

Restrictions-The N argument must be an integer. The D and P arguments are re-
turned as floating-point numbers.

Calling Sequence-MAXDAR(N,A(DV),B(DV),D) or MXDRAL(N,A(DV),B(DV),D,P)

73

MARY E. GEALY

Subroutine ARYINV or ARINDV

Purpose-Subroutine ARYINV will invert each element of an array in its own loca-
tion. Subroutine ARINDV will divide each element of an array into a constant value to
form a new array. Their respective operations are

Ai = 1.0/As, i= 1, N
or Ai = B/C1 , i = 1, N.

Restrictions-All data values must be floating-point numbers. The array length N
must be an integer.

Calling Sequence-ARYINV(N,A(DV)) or ARINDV(N,C(DV),B,A(DV))

The ARINDV answer array may be overlayed into the input array area.

Subroutine ADDINV or ADARIN

Purpose-Subroutine ADDINV will calculate one over the sum of the inverses of a
variable number of arguments. Subroutine ADARIN will calculate one over the sum of
inverses of an array of values. These subroutines are useful for calculating the effective
conductance of series conductors. Their respective operations are

Y = 1.0/(1./X 1+1/X 2 + +1/XN), N > 2
or Y = 1.0/1(1./X;), i = 1, N.

Restrictions-All data values must be floating-point numbers. The array length N
must be an integer.

Calling Sequence-ADDINV(X1,X2,X3, ... ,XN,Y) or ADARIN(N,X(DV),Y)

Subroutine STOARY or ARYSTO

Purpose-These subroutines will place a value into or take a value out of a specific
array location, respectively. Their respective operations are

Ai =X, i = N, N > 0
or X =A, i = N, N > 0.

Restrictions-The values may be anything, but N must be an integer.

Calling Sequence-STOARY(N,X,A(DV)) or ARYSTO(N,X,A(DV))

74

NRL REPORT 7656

Subroutine SCLDEP or SCLIND

Purpose-These subroutines will multiply the dependent or independent variables of
a doublet interpolation array, respectively. Their respective operations are

Ai = X * Ai, i = 3, 5, 7,..., N+1
or Ai = X *Ai, i = 2, 4, 6,..., N.

Restrictions-All values must be floating point. The arrays must contain the length
integer count as the first value, which must be even.

Calling Sequence-SCLDEP(A(IC),X) or SCLIND(A(IC),X)

Subroutine SLDARY or SLDARD

Purpose-These subroutines are useful for updating fixed-length interpolation arrays
during a transient analysis. The array data values are moved back one or two positions,
the first one or two values are discarded, and the last one or two values updated, respec-
tively. The "sliding array" thus maintained can then be used with standard interpolation
subroutines to simulate transport delay phenomena. Their respective operations are

Ai = Ai+l, i = 2, N
and Ai = X, i = N + 1
or Ai = Ai+ 2, i = 2, N-1

and Ai = X and Ai+, = Y, i = N.

Restrictions-The addressed arrays must have the array integer count N as the first
value. For SLDARD, N must be even.

Calling Sequence-SLDARY(X,A(IC)) or SLDARD(X,Y,A(IC))

Subroutine SPLIT or JOIN

Purpose-These subroutines separate a doublet array into two singlet arrays or com-
bine two singlet arrays into a doublet array respectively. Their respective operations are

Bi = A2i-1, i = 1, N
Ci = A2b, i= 1, N

or A2i-1l = Bi, i = 1, N
A2i = Ci, i = 1, N.

Restrictions-The arrays may contain any values, but N must be an integer. N is the
length of the B and C arrays, and the A array must be of length 2N.

Calling Sequence-SPLIT(N,A(DV),B(DV),C(DV)) or
JOIN(N,B(DV),C(DV),A(DV))

75

MARY E. GEALY

Subroutine SPREAD

Purpose-This subroutine applies interpolation subroutine D1D1DA to two singlet
arrays to obtain an array of dependent variables vs an array of independent variables. It
is extremely useful for obtaining singlet arrays of various dependent variables with a cor-
responding relationship to one singlet independent variable array. The dependent variable
arrays thus constructed can then be operated on by array manipulation subroutines in
order to form composite or complex functions. Doublet arrays can first be separated
with subroutine SPLIT and later reformed with subroutine JOIN.

Restrictions-All data values must be floating point except N, which must be the
integer length of the array to be constructed. The arrays fed into D1D1DA for interpola-
tion must start with the integer count. X is for independent and Y is for dependent. I
is for input and 0 for output.

Calling Sequence-SPREAD(N,X(IC),Y(IC),XI(DV),YO(DV))

Subroutine QMETER or RDTNQS or QMTRI or QFORCE

Purpose-These subroutines are generally used for calculating flow rates. Their
respective operations are

A = B * (C-D)
or A = B * ((C+460.)4 - (D+460.) 4)
or Ai = Bi * (Ci-Ci+i), i = 1, N
or Ai = Bi * (Ci-Di), i = 1, N.

Restrictions-All values must be floating-point numbers except the array length N,
which must be an integer.

Calling Sequence-QMETER(C,D,B,A) or RDTNQS(D,C,B,A) or
QMTRI(N,C(DV),B(DV),A(DV)) or
QFORCE(N,C(DV),D(DV),B(DV),A(DV))

Subroutine QINTEG or QINTGI

Purpose-These subroutines perform a simple integration. They are useful for ob-
taining the integrals of flow rates calculated by QMETER, RDTNQS, QMTRI, or QFORCE.
Their respective operations are

S = S + Q * DT
or Si = Si + Qi * DT, i= 1, N.

Restrictions-All values must be floating-point numbers except N which must be an
integer. Control constant DTIMEU should be used for the step size when doing an inte-
gration with respect to time. These subroutines should be called in Variables 2.

Calling Sequence-QINTEG(Q,DT,S) or QINTGI(N,Q(DV),DT,S(DV))

76

NRL REPORT 7656

Subroutine CINSIN or SINARY

Purpose-These subroutines obtain the sine function of an angle or an array of
angles. Their respective operations are

A = sin (B)
or Ai = sin (Bi), i = 1, N.

Restrictions-All angles must be in radians. All values must be floating-point num-
bers except N, which must be an integer.

Calling Sequence-CINSIN(B,A) or SINARY(N,B(DV),A(DV))

Subroutine CINCOS or COSARY

Purpose-These subroutines obtain the cosine function of an angle or array of
angles. Their respective operations are

A = cos (B)
or Ai cos (Bi), i = 1, N.

Restrictions-All angles must be in radians. All values must be floating-point num-
bers except the array length N, which must be an integer.

Calling Sequence-CINCOS(B,A) or COSARY(N,B(DV),A(DV))

Subroutine CINTAN or TANARY

Purpose-These subroutines obtain the tangent function of an angle or array of
angles. Their respective operations are

A = tan (B)
or Ai = tan (Bi), i = 1, N.

Restrictions-All angles must be in radians. All values must be floating point num-
bers except the array length N, which must be an integer.

Calling Sequence-CINTAN(B,A) or TANARY(N,B(DV),A(DV))

Subroutine ARCSIN or ASNARY

Purpose-These subroutines obtain the angle corresponding to a sine function value
or array of sine values. Their respective operations are

A = sin- (B)
or Ai = sin-'(Bi), i = 1, N.

Restrictions-The angles are returned in radians with the limits -7r/2<A<7r/2. All
values must be floating point except for the array length N, which must be an integer.

77

MARY E. GEALY

Calling Sequence-ARCSIN(B,A) or ASNARY(N,B(DV),A(DV))

Subroutine ARCCOS or ACSARY

Purpose-These subroutines obtain the angle corresponding to a cosine function
value or array of cosine values. Their respective operations are

A = cosrl(B)
or Ai = cos 1l(Bi), i = 1, N.

Restrictions-The angles are returned in radians with the limits 0 < A < 7r. All
values must be floating-point numbers except for the array length N, which must be an
integer.

Calling Sequence-ARCCOS(B,A) or ACSARY(N,B(DV),A(DV))

Subroutine ARCTAN or ATNARY

Purpose-These subroutines obtain the angle corresponding to a tangent function
value of array of tangent values. Their respective operations are

A = tan 1l(B)
or Ai = tan-l(Bi), i = 1, N.

Restrictions-The angles are returned in radians with the limits -7r/2 < A 6 7r/2. All
values must be floating-point numbers except the array length N, which must be an integer.

Calling Sequence-ARCTAN(B,A) or ATNARY(N,B(DV),A(DV))

Subroutine EXPNTL or ARYEXP or EXPARY

Purpose-These subroutines perform an exponential operation. Their respective
operations are

A = Be
or Ai = Bic, I = 1, N

or Ai = Bjic, I = 1, N.

Restrictions-All values must be positive floating-point numbers except N, which
must be an integer.

Calling Sequence-EXPNTL(C,B,A) or ARYEXP(N,C,B(DV),A(DV)) or
EXPARY(N,C(DV),B(DV),A(DV))

78

NRL REPORT 7656

Subroutine LOGT or LOGTAR

Purpose-These subroutines obtain the base 10 log function of a number or array of
numbers. Their respective operations are

A = loglo(B)

or Ai = logO(Bi), i = 1, N.

Restrictions-All values must be positive floating-point numbers except N, which
must be an integer.

Calling Sequence-LOGT(B,A) or LOGTAR(N,B(DV),A(DV))

Subroutine LOGE or LOGEAR

Purpose-These subroutines obtain the base e log function of a number or array of
numbers. Their respective operations are

A = loge(B)
or Ai = log,(Bj), i = 1, N.

Restrictions-All values must be positive floating-point numbers except N, which
must be an integer.

Calling Sequence-LOGE(B,A) or LOGEAR(N,B(DV),A(DV))

Subroutine SQROOT or SQROTI

Purpose-These subroutines obtain the square root of a number or array of numbers,
respectively. Their respective operations are

A = + /B

or Ai = +VBi, i = 1, N.

Restrictions-The A and B values must be floating-point numbers. The N must be
an integer.

Calling Sequence-SQROOT(B,A) or SQROTI(N,B(DV),A(DV))

Subroutine CMPXSR or CSQRI

Purpose-These subroutines obtain the complex square root of a complex number
or an array of complex numbers, respectively. Their respective operations are

A + iB = VC + iD, i = V-1

or Aj + iBj = C/+ iDj, j = 1, N.

79

MARY E. GEALY

Restrictions-All numbers must be floating-point except N, which must be an
integer.

Calling Sequence-CMPXSR(C,D,A,B) or CSQRI(N,C(DV),D(DV),A(DV),B(DV))

Subroutine CMPXMP or CMPYI

Purpose-These subroutines will multiply two complex numbers or the correspond-
ing elements of arrays of complex numbers. Their respective operations are

A + iB = (C + iD)*(E + iF), i =f1
or Aj + iBj = (Cj + iDj)*(Ej + iFj), j = 1, N

Restrictions-All numbers must be floating point except for N, which must be an
integer.

Calling Sequence-CMPXMP(C,D,E,F,A,B) or
CMPYI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

Subroutine CMPXDV or CDIVI

Purpose-These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are

A + iB = (C + iD)/(E + iF), i =
or Aj + iBj = (Cj + iDj)/(Ej + iFj), j = 1,N

Restrictions-All numbers must be floating point except for N, which must be an
integer.

Calling Sequence-CMPXDV(C,D,E,F,A,B) or
CDIVI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

Subroutine NEWTRT or NEWRT4

Purpose-These subroutines utilize Newton's method to obtain one root of a cubic
or quartic equation, respectively. The root must be in the neighborhood of the supplied
initial guess, and up to 100 iterations are performed in order to obtain an answer within
the specified tolerance. If the tolerance is not met, an answer of 1038 is returned. The
respective equations are

f(X) = A1+A2*X+A3*X 2 +A4*X 3 = O.O±T
or g(X) = A1+A2*X+A3*X 2 +A4*X 3 +A5*X 4 = O.O±T

where X starts as the initial guess RI and finishes as the final answer RF. T is the
tolerance.

80

NRL REPORT 7656

Restrictions-All data values must be floating-point numbers.

Calling Sequence-NEWTRT(A(DV),T,RI,RF) or NEWRT4(A(DV),T,RI,RF)

Subroutine PLYNML or PLYARY

Purpose-These subroutines calculate Y from the following polynomial equation:

Y = A1+A2*X+A3*X 2 +A4*X 3 + ... +AN*XN-1.

The number of terms is variable, but all the A coefficients must be entered no matter
what their value.

Restrictions-All values must be floating-point numbers except the number of coeffi-
cients N, which must be an integer.

Calling Sequence-PLYNML(X,A1,A2,A3,... ,AN,Y) or PLYARY(N,X,A(DV),Y)

Subroutine SMPINT or TRPZD

Purpose-These subroutines perform area integrations by Simpson's rule and the
trapezoidal rule, respectively. Simpson's rule requires that an odd number of points be
supplied. If an even number of points is supplied, SMPINT will apply the trapezoidal rule
to the last incremental area but Simpson's rule elsewhere. The respective operations are

A = DX*(Y1+4Y2+2Y3+4Y4+. . .+YN)/3
or A = DX*(Y1+2Y2+2Y3+2Y4+ . . .+YN)/2.

Restrictions-The DX increment must be uniform between all the Y points. All
values must be floating point except N, which must be an integer.

Calling Sequence-SMPINT(N,DX,Y(DV),A) or TRPZD(N,DX,Y(DV),A)

Subroutine TRPZDA

Purpose-This subroutine performs area integration by the trapezoidal rule. It
should be used where the DX increment is not uniform between the Y values but the
corresponding X value for each Y value is known. The operation performed is as follows:

A2 = (Xi-Xj-1)*(Yj+Yj-1), i = 2, N.

Restrictions-All values must be floating-point numbers except the array length N,
which must be an integer.

Calling Sequence-TRPZDA(N,X(DV),Y(DV),A)

81

MARY E. GEALY

Subroutine PRESS or SPRESS

Purpose-These routines are useful for impressing nodal pressures in one-dimensional
flow paths once the entry pressure P1, path conductance G, and flow rate W are known.
The respective equations are

P2 = P1-W/G
or Pli+1 = Pli-W/Gi, i = 1, 2, 3,..., N.

Restrictions-For SPRESS, the pressures and conductors must be sequential and in
ascending order; the number of pressure points to be calculated must be supplied as the
integer N.

Calling Sequence-PRESS(P1,W,G,P2) or SPRESS(N,P1(DV),W,G(DV))

Subroutine EFFG

Purpose-Subroutine EFFG is a pressure network of the type in Fig. 11.

Pi P2

Fig. 11

Where the values of the identified elements are known, this subroutine will calculate the
effective conductance GE from P1 to P2. Any interconnections may occur in the space,
but only P2, P3 and P4 may be on the boundary and no elements may cross it. The
equation utilized is

GE = (G1*(P1-P3) + G2*(P1-P4))/(P1-P2).

Restrictions-See above. May not be used where capacitors appear on the internal
nodes.

Calling Sequence-EFFG(P1,P2,P3,P4,Gl,G2,GE)

Subroutine EFFEMS

Purpose-This subroutine calculates the effective emissivity E between parallel flat
plates by the following equation:

E = 1.0/(1.0/El + 1.0/E2 - 1.0),

where El and E2 are the emissivities of the two surfaces under consideration.

Restrictions-Arguments must be floating-point numbers.

Calling Sequence-EFFEMS(E1,E2,E)

82

NRL REPORT 7656

Output Subroutines

Name Page

STNDRD, PRNTMP, PRINT, PRINTL 83
PRINTA, PRNTMA, PUNCHA 84
TPRINT, READ, WRITE, EOF, REWIND 85

Subroutine STNDRD or PRNTMP

Purpose-Subroutine STNDRD causes a line of output to be printed giving the
present time, the last time step used, the most recent CSGMIN value, the maximum dif-
fusion temperature change calculated over the last time step, and the maximum relaxation
change calculated over the last iteration. RNN refers to the relative node number on
which something occurred. The line of output looks as follows:

* * * * *

TIME DTIMEU- CSGMIN(RNN)-DTMPCC(RNN)-ARLXCC(RNN)

Subroutine PRNTMP internally calls on STNDRD and also lists the temperature of every
node in the network according to relative node number. The relative node number vs
actual node number dictionary printed out with the input data should be consulted to
determine temperature locations on the thermal network model.

Restrictions-No arguments are required or allowed. These subroutines should be
used with network problems only.

Calling Sequence-STNDRD or PRNTMP

Subroutine PRINT or PRINTL

Purpose-These subroutines allow individual floating-point numbers to be printed out.
The arguments may reference temperature, capacitance, source locations, conductors,
constants, or unique array locations. In addition, subroutine PRINTL allows each value
to be preceded or labeled by a 6-character alphanumeric word. The number of arguments
is variable, but the "label" array used for PRINTL should contain a label for each
argument.

83

MARY E. GEALY

Restrictions-These subroutines do not call on STNDRD. The user may call on it if
he desires time control information. Any control constant may be addressed in order to
see what its value is; integers must first be floated.

Calling Sequence-PRINT(T,C,Q,G,K,... ,A+) or PRINTL(LA(DV),T,C,Q,G,K,... ,A+)

Subroutine PRINTA

Purpose-This subroutine allows the user to print out an array of values, five to the
line. The integer array length N and the first data value location must be specified. Each
value receives an indexed label. The user must supply a 6-character alphanumeric word L
to be used as a common label and an integer value M to begin the index count.

Restrictions-The array values to be printed must be floating-point numbers.

Calling Sequence-PRINTA(L,A(DV),N,M)

If the label was the work TEMP, N was 3, and M was 6, the line of output will look as
follows:

TEMP (6) valueTEMP (7)value TEMP (8)vaJue

Subroutine PRNTMA

Purpose-This subroutine allows the user to print out up to 10 arrays in a column
format. The individual elements are not labeled, but each column receives a 2-line head-
ing of 12 alphanumeric characters each. The 2-line heading must be supplied as a single
array of four words, six characters each. The user must supply the starting location of
each label array and value array. The number of values in each value array must agree
and be supplied as the integer N. The value arrays must contain floating-point numbers.

Restrictions-Labels must be alphanumeric, while values must be floating point. All
floating-point-value arrays must contain the same number of values.

Calling Sequence-PRNTMA(N,LA1 (DV),VA1 (DV),LA2(DV),VA2(DV),...)

Subroutine PUNCHA

Purpose-This subroutine enables a user to punch out an array of data values in any
desired format. The F argument must reference a FORTRAN format which has been
input as an array, including the outer parentheses but deleting the word format. The
second argument must address the first data value of the array of sequential values. The
third argument N must be the integer number of data values in the array.

Restrictions-Punched cards must be asked for on the job request form.

Calling Sequence-PUNCHA(F(DV),A(DV),N)

84

NRL REPORT 7656

Subroutine TPRINT

Purpose-Subroutine TPRINT makes a call to STNDRD, then lists the actual node
number and corresponding temperature for every node in a network.

Restrictions-This subroutine may be called from any of the operations blocks.

Calling Sequence-TPRINT

Subroutine READ or WRITE

Purpose-These subroutines enable the user to read and write arrays of data as binary
information on magnetic tape. The first argument L must be the integer number of the
logical tape being addressed. The second argument X must address the first data value
of the array to be written out or the starting location for data to be read into. The third
argument N must be an integer. For WRITE it is the number of data values to be written
on tape as a record. For READ it is the number of data values to be read in from tape
from the next record, not necessarily the entire record.

Restrictions-The user should check section VII to determine which logical units
are available and control card requirements. All processed information must be in binary.

Calling Sequence-READ(L,X(DV),N) or WRITE(L,X(DV),N)

Subroutine EOF or REWIND

Purpose-These subroutines enable the user to write end of file marks on magnetic
tape and to rewind them. They are generally used in conjunction with subroutines READ
and WRITE discussed above. The single argument L must be the integer logical tape
number of the unit being activiated.

Restrictions-The user should check section VII to determine available logical units.

Calling Sequence-EOF (L) or REWIND (L)

85

MARY E. GEALY

Matrix Subroutines

Name

ZERO, ONES, UNITY, SIGMA, GENALP, GENCOL
SHIFT, REFLCT, SHUFL, COLMAX, COLMIN
ELEADD, ELESUB, ELEMUL, ELEDIV, ELEINV,
EFSIN, EFASN ...
EFCOS, EFACS, EFTAN, EFATN, EFLOG, EFSQR
EFEXP, EFPOW, MATRIX, SCALAR, DISAS, ASSMBL
DIAG, COLMLT, ROWMLT, ADDALP, ALPHAA, AABB

BTAB, INVRSE, MULT ..
TRANS, POLMLT, POLVAL, PLYEVL.
POLSOV, JACOBI, MODES
MASS
STIFF, LIST
PUNCH, Matrix Data Storage and Retrieval, CALL, FILE,
ENDMOP, LSTAPE

NOTE: All of the above subroutines require that matrixes be entered as positive num-
bered arrays having the integer number of rows and columns as the first two data values
followed by the floating-point element values in row order. The above package of sub-
routines is referred to as MOPAS, for Matrix Oriented Production Assembly System.

86

Page

87
88

89
90
91
92
93
94
95
96
97

98

NRL REPORT 7656

Subroutine ZERO or ONES

Purpose-These subroutines generate a matrix [Z] such that every element is zero or
one, respectively.

Restrictions-The matrix to be generated must contain exactly enough space in addi-
tion to having the integer number of rows and columns as the first two data values. The
NR and NC arguments are the integer number of rows and columns, respectively.

Calling Sequence-ZERO(NR,NC,Z(IC)) or ONES(NR,NC,Z(IC))

Subroutine UNITY or SIGMA

Purpose-These are square matrix generation subroutines. UNITY generates a square
matrix such that the main diagonal elements are one and all other elements are zero.
SIGMA generates a square matrix such that all elements on and below the main diagonal
are one and the remaining elements are zero.

Calling Sequence-UNITY(N,Z(IC)) or SIGMA(N,Z(IC))

Restrictions-The matrix [Z] to be generated must contain exactly enough space in
addition to having the integer number of rows and columns as the first two data values.
The integer number of rows and columns are equal and must be input as the argument N.

Subroutine GENALP or GENCOL

Purpose-These are special matrix generation subroutines. GENALP will generate a
matrix such that every element is equal to a constant C. GENCOL will generate a column
matrix such that the first element is equal to X1 and the last element is equal to X2. The
intermediate elements receive equally incremented values such that a linear relationship is
established between row number and element value.

Restrictions-The NR and NC arguments refer to the integer number of rows and
columns, respectively. XI, X2, and C must be floating-point values. The generated
matrixes must contain exactly enough space in addition to having the integer number of
rows and columns as the first two data values.

Calling Sequence-GENALP(NR,NC,C,Z(IC)) or GENCOL(X1,X2,NR,Z(IC))

87

MARY E. GEALY

Subroutine SHIFT or REFLCT

Purpose-These subroutines may be used to move an entire matrix from one location
to another. SHIFT moves the matrix exactly as is and REFLCT moves it and reverses
the order of the elements within each column. The last element in each column becomes
the first and the first becomes the last, etc.

REFLCT uses three dynamic storage locations plus an additional one for each row.

Restrictions-The matrixes must be of identical size, and the integer number of rows
and columns must be the first two data values. The [Z] matrix may be overlayed into
the [A] matrix.

Calling Sequence-SHIFT(A(IC),Z(IC)) or REFLCT(A(IC),Z(IC))

Subroutine SHUFL

Purpose-This subroutine allows the user to reorder the size of a matrix as long as
the total number of elements remains unchanged. The row order input matrix [A] is
transposed to achieve column order and then reformed as a vector by sequencing the
columns in ascending order. This vector is then reformed into a column order matrix by
taking a column at a time sequentially from the vector. The newly formed column ma-
trix is then transposed and output as the row order matrix [Z].

Restrictions-The matrixes must be identical in size and have their respective integer
number of rows and columns as the first two data values. The number of rows time
columns for [A] must equal the number of rows times columns of [Z].

Calling Sequence-SHUFL(A(IC),Z(IC))

Subroutine COLMAX or COLMIN

Purpose-These subroutines search an input matrix to obtain the maximum or mini-
mum values within each column, respectively. These values are output as a single row
matrix [Z] having as many columns as the input matrix [A].

Restrictions-Each matrix must have its integer number of rows and columns as the
first two data values.

Calling Sequence-COLMAX(A(IC),Z(IC)) or COLMIN(A(IC),Z(IC))

88

NRL REPORT 7656

Subroutine ELEADD or ELESUB

Purpose-These subroutines add or subtract the corresponding elements of two
matrixes, respectively;

m*n m*n m*n
[Z] = [A] ± [B], zij = aij ± bij.

Restrictions-All matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] or [B] matrix.

Calling Sequence-ELEADD(A(IC),B(IC),Z(IC)) or ELESUB(A(IC),B(IC),Z(IC))

Subroutine ELEMUL or ELEDIV

Purpose-These subroutines multiply or divide the corresponding elements of two
matrixes, respectively;

m*n m*n m*n
[Z] = [A] */ [B], zij = aij */ bij.

Restrictions-All matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into the
[A] or [B] matrix.

Calling Sequence-ELEMUL(A(IC),B(IC),Z(IC)) or ELEDIV(A(IC),B(IC),Z(IC))

Subroutine ELEINV

Purpose-This subroutine obtains the reciprocal of each element of the [A] matrix
and places it in the corresponding element location of the [Z] matrix;

zij = 1.0/aij.

Restrictions-The matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into the
[A] matrix.

Calling Sequence-ELEINV(A(IC),Z(IC))

Subroutine EFSIN or EFASN

Purpose-These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zij = sin (aij) or zij = arcsin (aij).

89

MARY E. GEALY

Restrictions-The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into the
[A] matrix.

Calling Sequence-EFSIN(A(IC),Z(IC)) or EFASN(A(IC),Z(IC))

Subroutine EFCOS or EFACS

Purpose-These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zij = cos (aij) or zij = arccos (aij).

Restrictions-The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] matrix.

Calling Sequence-EFCOS(A(IC),Z(IC)) or EFACS(A(IC),Z(IC))

Subroutine EFTAN or EFATN

Purpose-These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

Zij = tan (aij) or zij = arctan (aij).

Restrictions-The matrixes must be of identical size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] matrix.

Calling Sequence-EFTAN(A(IC),Z(IC)) or EFATN(A(IC),Z(IC))

Subroutine EFLOG or EFSQR

Purpose-These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zij = loge(aij) or zij = v/-ui

Restrictions-The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. All elements in the [A] matrix must be
positive.

Calling Sequence-EFLOG(A(IC),Z(IC)) or EFSQR(A(IC),Z(IC))

90

NRL REPORT 7656

Subroutine EFEXP or EFPOW

Purpose-These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

zij = e ij or zij = aia-

Restrictions-The matrixes must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be overlayed into
the [A] matrix. The exponent a may be an integer or floating-point number. However,
if any elements in [A] are negative then a must be an integer.

Calling Sequence-EFEXP(A(IC),Z(IC)) or EFPOW(A(IC),a,Z(IC))

Subroutine MATRIX or SCALAR

Purpose-Subroutine MATRIX allows a constant to replace a specific matrix element,
and subroutine SCALAR allows a specific matrix element to be placed into a constant
location. The integers I and J designate the row and column position of the specific
element;

z= C or C = zij.

Restrictions-The matrix must have the integer number of rows and columns as the
first two data values. Checks are made to insure that the identified element is within the
matrix boundaries.

Calling Sequence-MATRIX(CI,J,Z(IC)) or SCALAR(Z(IC),I,J,C)

Subroutine DISAS or ASSMBL

Purpose-These subroutines allow a user to operate on matrixes in a partitioned
manner by disassembling a submatrix [Z] from a parent matrix [A] or assembling a sub-
matrix [Z] into a parent matrix [A].

Restrictions-The I and J arguments are integers which identify (by row and column
number, respectively) the upper left-hand corner position of the submatrix within the
parent matrix. All matrixes must have exactly enough space and contain the integer
number of rows and columns as the first two data values. The NR and NC arguments are
the integer number of rows and columns, respectively, of the disassembled submatrix. If
the submatrix exceeds the bounds of the parent matrix an appropriate error message is
written and the program terminated.

Calling Sequence-DISAS(A(IC),I,J,NR,NC,Z(IC)) or ASSMBL(Z(IC),I,J,A(IC))

91

MARY E. GEALY

Subroutine DIAG

Purpose-Given a 1*N or N*1 matrix [V], this subroutine forms a full square N*N
matrix [Z]. The [V] values are placed sequentially on the main diagonal of [Z] and all
off-diagonal elements are set to zero.

Restrictions-Both matrixes must have exactly enough space and 'contain their integer
number of rows and columns as the first two data values.

Calling Sequence-DIAG(V(IC),Z(IC))

Subroutine COLMLT or ROWMLT

Purpose-To multiply each element in a column or row of matrix [A] by its cor-
responding element from the matrix [V] which is conceptually a diagonal matrix but
stored as a vector; i.e., 1*N or N*1 matrix. The matrix [Z] is the product.

Restrictions-The matrixes must have exactly enough space and contain the integer
number of rows and columns as the first two data values. The matrixes being multiplied
must be conformable.

Calling Sequence-COLMLT(A(IC),V(IC),Z(IC)) or ROWMLT(V(IC),A(IC),Z(IC))

Subroutine ADDALP or ALPHAA

Purpose-These subroutines add a constant to or multiply a constant times every
element in a matrix;

Zij = C+aij or zij = C*aij.

Restrictions-The matrixes must have exactly enough space and contain the integer
number of rows and columns as the first two data values. C and all elements must be
floating-point numbers. The [Z] matrix may be overlayed into the [A] matrix.

Calling Sequence-ADDALP(C,A(IC),Z(IC)) or ALPHAA(C,A(IC) ,Z(IC))

Subroutine AABB

Purpose-To sum two scaled matrixes;

m*n m*n m*n
[Z] = C1 [A] + C2 [B] and zij = C1*aij + C2*bij.

Restrictions-All matrixes must be of identical size, contain exactly enough space,
and contain the integer number of rows and columns as the first two data values. The
output matrix [Z] may be overlayed into either of the input matrixes.

Calling Sequence-AABB(C1,A(IC),C2,B(IC),Z(IC))

92

NRL REPORT 7656

Subroutine BTAB

Purpose-To perform the following matrix operation:

n*n n*m m*m m*n
[Z] = [B]t [Al [B]

Restrictions-The matrixes must be conformable, contain exactly enough space, and
contain the integer number of rows and columns as the first two data values. Subrou-
tines MULT and TRANS are called on.

This subroutine (due to MULT and TRANS) uses 2*m*n+6 dynamic storage
locations.

Calling Sequence-BTAB(A(IC),B(IC),Z(IC))

Subroutine INVRSE

Purpose-To invert a square matrix;

n*n n*n n*n
given [A], [Z] = [A] 1

This subroutine requires n dynamic storage locations.

Restrictions-The matrixes must be square, identical in size, and contain the integer
number of rows and columns as the first two data values. The output matrix [Z] may
be overlayed into the [Al matrix.

Calling Sequence-INVRSE(A(IC),Z(IC))

Subroutine MULT

Purpose-To multiply two conformable matrixes together;

m*n m*p p*n
[Z] = [A] [B], zij = aik*bkj-

This subroutine requires n*m dynamic storage locations.

Restrictions-The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values. If [A] and [B] are square,
[Z] may be overlayed into either of them.

Calling Sequence-MULT(A(IC),B(IC),Z(IC))

93

MARY E. GEALY

Subroutine TRANS

m*n n*m
Purpose-Given a matrix [A], form its transpose as [Z]

This subroutine requires n*m dynamic storage locations.

Restrictions-Both matrixes must have exactly enough space and contain their inte-
ger number of rows and columns as the first two data values. The output matrix [Z]
may be overlayed into the [A] matrix.

Calling Sequence-TRANS(A(IC),Z(IC))

Subroutine POLMLT

Purpose-This subroutine performs the multiplication of a given number of nth
order polynomial coefficients by a similar number of mth order polynomial coefficients.
The polynomials must be input as matrixes with the number of rows equal, and each row
receives the following operation:

(clC2,C3, * * *-ck) = (al,a2, * *,an)*(b1,b2, .-.. bm), k = m+n-1.

Restrictions-The matrixes must have exactly enough space and contain their inte-
ger number of rows and columns as the first two data values.

Calling Sequence-POLMLT(A(IC),B(IC),((IC))

Subroutine POLVAL

Purpose-Given a set of polynomial coefficients as the first row of matrix [A], this
subroutine evaluates the polynomial for the input complex number X+iY. The answer is
returned as U+iV.

Restrictions- [A] may be m*n, but only the first row is evaluated.

Calling Sequence-POLVAL(A(IC),X,Y,U,V)

Subroutine PLYEVL

Purpose-Given a matrix [A] containing an arbitrary number NRA of nth order
polynomial coefficients and a column matrix [X] containing an arbitrary number NRX
of x values, this subroutine evaluates each polynomial for each x value. The answers are
output as a matrix [Z] of size NRX*NRA. Each set of polynomial coefficients in [Al
is a row in ascending order. An x value evaluated for the polynomials creates a row in
[Z] where the column number agrees with the polynomial row number.

94

NRL REPORT 7656

Restrictions-The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

Calling Sequence-PLYEVL(A(IC),Z(IC),Z(IC))

Subroutine POLSOV

Purpose-Given a set of polynomial coefficients as the first row in matrix [A],
size (m,n+1), this subroutine calculates the complex roots which are returned as matrix
[Z], size (n,2). Column 1 contains the real part and column 2 the imaginary part of
the roots.

Restrictions-This subroutine presently is limited to n = 20. It internally calls on
RTPOLY and utilizes some double precision.

Calling Sequence-POLSOV(A(IC),Z(IC))

Subroutine JACOBI

Purpose-This subroutine will find the eigenvalues [E] and eigenvector matrix [Z]
associated with an input matrix [A];

n*n n*n n*n n*1
[A] [Z] = [ZJ [E].

This subroutine requires 2*n*n+6 dynamic storage locations.

Restrictions-The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

Calling Sequence-JACOBI(A(IC),E(IC),Z(IC))

Subroutine MODES

Purpose-This subroutine solves the dynamic vibration equation

n*n n*n n*n n*n n*1
[A] [Z] = [B] [Z] i1]l

where [A] is the input inertia matrix associated with the kinetic energy and [B] is the
input stiffness matrix associated with the strain energy. [Z] is the output eigenvector
matrix associated with the frequencies of vibration Wi which are output in rad/sec as
[R] and in hertzes as [C]; both [R] and [C] are n*1 matrixes.

This subroutine requires 3*n*n+9 dynamic storage locations.

95

MARY E. GEALY

Restrictions-The matrixes must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Subroutine JACOBI is called
on.

Calling Sequence-MODES(A(IC),B(IC),Z(IC),R(IC),C(IC))

Subroutine MASS

Purpose-If a dynamic vibration problem is referred to a set of coordinates consist-
ing of the deflections Pi and the rotations 0i at N collocation points along the beam
under consideration, then this subroutine generates the 2N by 2N inertia matrix [A]
which appears in the following expression for kinetic energy.

T 2 .. N61 ... ON}JA] [A

rN
°1

Restrictions-The mass and inertia data inputs to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of arbitrary size and differ-
ent in length from each other. The number of collocation points N which determines the
ultimate size, 2N by 2N, of the output inertia matrix, is also chosen arbitrarily.

Calling Sequence-MASS(X(IC),DMPL(IC),RIPL(IC),CM(IC),A(IC))

Here

X is an N*1 matrix of collocation points referred to an arbitrary origin.
DMPL is an NDM*4 matrix of distributed mass per unit length slices, in which

Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col 4 is the mass value at the front of the slice.

RIPL is an NRI*4 matrix of distributed rotary inertia per unit length slices. The
columns here are similar to DMPL.

CM is an NCM*4 matrix of concentrated mass items, where
Col 1 is the attach point location for each item.
Col 2 is the mass at this location.
Col 3 is the location of its center of gravity.
Col 4 is the amount of inertia about the center of gravity.

A is a 2N*2N output inertia matrix.

NOTE: Since this applies to DMPL, RIPL, and CM, the location of the values may not
go beyond the limits of the collocation points in either direction.

96

NRL REPORT 7656

Subroutine STIFF

Purpose-If a dynamic vibration problem is referred to a set of coordinates consist-
ing of the deflections tj and the rotations 0i at N collocation points along the beam
under consideration, then this subroutine generates the 2N by 2N stiffness matrix [K]
which appears in the following expression for the strain energy

1 (°

01

Restrictions-The stiffness and shear data inputs to this subroutine are to be sup-
plied as piecewise continuous slices; however, these arrays may be of arbitrary size and
different in length from each other. The number of collocation points N, which deter-
mine the ultimate size (2N by 2N) of the output stiffness matrix, is also chosen arbitrarily.

Calling Sequence-STIFF(X(IC),EI(IC),GA(IC),K(IC))

where

X is an N by 1 matrix of collocation points referred to an arbitrary origin.
EI is an NEI by 4 matrix of bending stiffness slices, where

Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Col 4 is the stiffness value at the front of a slice.

GA is an NGA by 4 matrix of shear stiffness slices, where the columns here are
similar to those for the El distribution.

K is the output stiffness matrix size 2N by 2N.

NOTE: Since this applies to EI and GA, the location of the values may not go beyond
the limits of the collocation points in either direction.

Subroutine LIST

Purpose-This subroutine prints out the elements of a matrix [Al and identifies each
by its row and column number. The user must supply an alphanumeric name ALP and
integer number NUM to identify the matrix. This is to maintain consistency with sub-
routines FILE and CALL.

Restrictions-The matrix must have its integer number of rows and columns as the
first two data values.

Calling Sequence-LIST(A(IC) ,ALP,NUM)

97

MARY E. GEALY

Subroutine PUNCH

Purpose-This subroutine punches out a matrix [A], size n*m, one column at a
time in any desired format. The argument FOR must reference a FORTRAN format
statement that has been entered as a positive array. It must include the outer paren-
thesis but not the word FORMAT. The argument HEAD must be a single BCD word
used to identify the matrix. Each column is designated and restarts use of the FORMAT
statement.

This subroutine requires n+3 dynamic storage locations.

Restrictions-The matrix [A] must have exactly enough space and contain the inte-
ger number of rows and columns as the first two data values. Punched cards must be
asked for on the job request form.

Calling Sequence-PUNCH(A(IC),HEAD,FOR(IC))

Matrix Data Storage and Retrieval

The ability to store and retrieve matrixes from tape is easily achieved through the
use of the FILE and CALL subroutines. Matrixes are identified by an alphanumeric
name, integer problem number, and the core address of or for the matrix. The CALL
subroutine searches the matrix storage tape on logical 16 and brings the desired matrix
into core. The FILE subroutine writes a matrix onto the logical 30 tape. Subroutine
ENDMOP causes all matrixes from the logical 30 tape to be updated onto the logical 16
tape. In case of duplicate matrixes the one from logical 30 replaces the one on logical
16. A matrix which has been filed cannot be called until an ENDMOP operation has been
performed. To create a new tape the user merely sets control constant NOCOPY nonzero
and has a scratch tape mounted on logical 16. The user should check the section on con-
trol cards and deck setup to determine control card requirements.

Subroutine CALL or FILE

Purpose-To allow the user to retrieve or store matrixes on magnetic tape, see above.
The H argument must be a 6-character alphanumeric word and N must be an integer
number, both of which are used to identify the matrix.

Restrictions-See above. The matrix must have exactly enough space and contain
the integer number of rows and columns as the first two data values.

Calling Sequence-CALL (H,N,A(IC)) or FILE (A(IC),H,N)

Subroutine ENDMOP or LSTAPE

Purpose-Subroutine ENDMOP should be used in conjunction with subroutines CALL
and FILE, see above. It causes matrixes which have been filed by FILE on logical 30 to
be updated onto logical 16. A call to subroutine LSTAPE will cause the output of the
name, problem number, and size of every matrix stored on tape on logical 16.

Restrictions-See above.

Calling Sequence-ENDMOP or LSTAPE

98

NRL REPORT 7656

Special Subroutines

Name

SIMEQN, LSTSQU
IRRADE, IRRADI
SLRADE, SLRADI, SCRPFA......
ABLATS
LQDVAP, BIVLV
LINE
STATE
PSOFTS, TSOFP, TRNPRT
GSGDMP, LSTPCS, QMAP, TSAVE.

...... 99

...... 100

...... 101

...... 102

...... 103

...... 104

...... 105

...... 106

...... 107

Subroutine SIMEQN

Purpose-This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output values are
communicated as a single, specially formatted, positive input array. The array argument
must address the matrix order (N) which is input by the user. The first data value must
be the integer order of the set (or size of the square matrix) followed by the coefficient
matrix [A] in column order, the boundary vector { B }, and space for the solution vec-
tor { S}:

[A] {S} = {B}.

Restrictions-The integer count and matrix size must be integers; all other values
must be floating point. The coefficient matrix is not modified by SIMEQN. Hence,
changes to {B} only allow additional solutions to be easily obtained.

Calling Sequence-SIMEQN(A(N))

where the array is formatted exactly as follows:

IC,N,A(1,1),A(1,2),. ..,A(N,N),B1,.. . ,BN,S1,.. . ,SN

Subroutine LSTSQU

Purpose-This subroutine performs a least squares curve fit to an arbitrary number
of X, Y pairs to yield a polynomial equation of up to order 10. Rather than using a
double precision matrix inverse, this subroutine calls on subroutine SIMEQN to obtain a
simultaneous solution.

99

Page

MARY E. GEALY

This subroutine requires 2*M dynamic storage core locations.

Restrictions-All values must be floating-point numbers except N and M, which must
be integers. N is the order of the polynomial desired and is one less than the number of
coefficients desired. M is the array length of the independent X or dependent Y values.

Calling Sequence-LSTSQU(N,M,X(DV),Y(DV),A(DV))

Subroutine IRRADI or IRRADE

Purpose-These subroutines simulate a radiosity network* within a multiple gray
surface enclosure containing a nonabsorbing media. The input is identical for both sub-
routines. However, IRRADE utilizes explicit equations to obtain the solution by relaxa-
tion, and IRRADI initially performs a symmetric matrix algebra inverse and thereafter
obtains the exact solution implicitly by matrix multiplication. The relaxation criteria of
IRRADE is internally calculated and severe enough so that both routines generally yield
identical results. However, IRRADE should be used when temperature-varying emissivi-
ties are to be considered, and IRRADI should be used when the surface emissivities are
constant. Both subroutines solve for the J-node radiosity, obtain the net radiant heat
flow rates to each surface, and return them sequentially in the last array that was initially
used to input the surface temperatures. The user need not specify any radiation con-
ductors within the enclosure.

Restrictions-The Fahrenheit system is required. The arbitrary number of tempera-
ture arguments may be constructed by a preceding BLDARY call. The emissivity, area,
temperature-Q and upper half-FA arrays must be in corresponding order and of exact
length. The first data value of the FA array must be the integer number of surfaces and
the second the Stephan-Boltzmann constant in the proper units and then the FA floating-
point values in row order. The diagonal elements (even if zero) must be included. As
many radiosity subroutine calls as desired may be used. However, each call must have
unique array arguments. The user should follow the radiosity routine by SCALE,
BRKARY, or BKARAD to distribute the Q's to the proper source locations.

Calling Sequences-IRRADI(AA(IC),Ae(IC),AFA(IC),ATQ(IC)) or
IRRADE(AA(IC),Ae(IC),AFA(IC),ATQ(IC))

The arrays are formatted as follows:

AA(IC),A1,A2,A3,A4, .. ., AN,END
Ae(IC),el,e2,e3,e4, . . . , eN,END
AFA(IC),N,a,FA(1,1),FA(1,2),FA(1,3),FA(1,4),FA(1,5),. . . FA(1,N)

FA(2,2),FA(2,3),FA(2,4),FA(2,5), ... FA(2,N)

FA(N-2,N-2),FA(N-2,N-1),FA(N-2,N)
FA(N-1,N-1),FA(N-1,N)

FA(N,N),END
ATQ(IC),T1,T2,T3,... TN,END

*A. K. Oppenheim, "Radiation Analysis by the Network Method," Trans. ASME 78, 725-735 (1956).

100

NRL REPORT 7656

where FA(1,2) is defined as A(1) * F(1,2). After the subroutine has been performed the
ATQ array is ATQ(IC),Q1,Q2,Q3, ... QN,END.

Since FA1 (1,2) FA2 (2,1) only the upper half triangle of the full FA matrix is
required. IRRADI inverts this half-matrix in its own area; hence, approximately 300
surfaces may be considered using CINDA on a 65k-core machine.

Subroutine SLRADI or SLRADE

Purpose-These subroutines are very similar to IRRADI and IRRADE but are de-
signed to solve for the solar heating rates within an enclosure. SLRADI inverts half a
symmetric matrix in order to obtain implicit solutions while SLRADE obtains solutions
explicitly by relaxation. SLRADE should be used when temperature varying solar emissivi-
ties are to be considered. The second data value of the AFA array must be the solar con-
stant in the proper units. The AT array allows the user to input the angle (degrees) be-
tween the surface normal and the surface-sun line. The AI array allows the user to input
an illumination factor for each surface which is the ratio from zero to one of the unshaded
portion of the surface. The solar constant S, AT, and AI values may vary during the
transient for both routines. No input surface temperatures are required. The absorbed
heating rates are returned sequentially in the AQ array; the user may utilize SCALE,
BRKARY, or BKARAD to distribute the heating rates to the proper source locations.

Restrictions-These routines are independent of the temperature system being used.
All of the array arguments must reference the integer count set by the CINDA preproc-
essor and be of the exact required length. As many calls as desired may be made, but
each call must have unique array arguments.

Calling Sequences-SLRADI(AA(IC),Ae(IC),AFA(IC),AT(IC),AI(IC),AQ(IC)) or
SLRADE(AA(IC),Ae(IC),AFA(IC),AT(IC),AI(IC),AQ(IC))

Subroutine SCRPFA

Purpose-To obtain the script FA value for radiant transfer within an enclosure.
The input arrays are formatted as shown for subroutines IRRADI and IRRADE. The
second data value in the AFA array is used as a final multiplier. If 1.0 the script FA
values are returned; if a then script a FA values are returned. The script FA values are
returned in the ASFA array which is formatted identically to the AFA array and may
overlay it.

Restrictions-All array arguments must reference the integer count set by the
CINDA preprocessor, and all arrays must be exactly the required length.

Calling Sequence-SCRPFA(AA(IC),Ae(IC),AFA(IC) ,ASFA(IC))

NOTE: Subroutine SYMLST(ASFA(IC)+3,ASFA(IC)+1) may be called to list the matrix
values and identify them by row and column number. This routine and the implicit
radiosity routines finalize the half-symmetric-coefficient matrix and call on
SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symmetric inverse.

101

MARY E. GEALY

Subroutine ABLATS

Purpose-ABLATS provides a simple ablation (sublimation) capability for the CINDA
user. The user constructs the three-dimensional network without considering the ablative.
Then in Variables 2 he simulates one-dimensional ablative attachments by calling ABLATS.
ABLATS constructs the one-dimensional network and solves it by implicit forward-
backward differencing (Crank-Nicholson method) using the time step set by the execu-
tion subroutine. Separate ablation arrays (AA) must be used for each ABLATS call. Re-
quired working space is obtained from unused program COMMON. Several ABLATS
calls thereby share unused COMMON. The user must call subroutine PNTABL(AA) in the
OUTPUT CALLS to obtain the ablation totals and temperature distribution.

Restrictions-ABLATS must be called in Variables 2 and may be used with any
execution subroutine. Subroutines D1DEG1, NEWTR4, and INTRFC are called. All
units must be consistent. The Fahrenheit system is required. Temperature-varying mate-
rial property arrays must not exceed 60 doublets. Bivariate material properties may be
simulated by calling BVSPSA prior to ABLATS. Cross-sectional area is always considered
unity. Thermal conductivity, Stephan-Boltzmann constant, and density units must agree
in area and length units.

This subroutine requires 3*(NSL+1) dynamic storage core locations.

Calling Sequence-ABLATS(AA(IC),R,CP,G,T,C)

where

C is the capacitance location of the three-dimensional node.
T is the temperature location of the three-dimensional node.
G is the location of the material thermal conductivity or the starting location (inte-

ger count) of a doublet G vs T array.
CP is the location of the material specific heat or the starting location (integer

count) of a doublet Cp vs T array.
R is the location of the material density or the starting location (integer count) of a

doublet p vs T array.
AA(IC) is the starting location of the ablation array which must be formatted as

follows:
AA(IC)+1-the ablative link number, a user-specified identification integer.
AA(IC)+2-integer number of sublayers (NSL) desired; ABLATS subtracts

from this the number of sublayers ablated.
AA(IC)+3-the initial temperature of the material; ABLATS replaces this with

the outer surface temperature, always in degrees F.
AA(IC)+4-the impressed outer surface heating rate per unit area, radiation

rates not included.
AA(IC)+5-material thickness; this is replaced by the sublayer thickness.
AA(IC)+6-surface area of the three-dimensional node; need not be unity.
AA(IC)+7-ablation temperature, degrees F.
AA(IC)+8-heat of ablation.
AA(IC)+9-Stephan-Boltzmann constant in consistent units.

AA(IC)+10-surface emissivity.

102

NRL REPORT 7656

AA(IC)+11-space "sink" temperature, degrees F.
AA(IC)+12-SPACE,N,END where N equals NSI + 4.

NOTE: The outer surface radiation loss is integrated over the time step.

Subroutine LQDVAP

Purpose-This subroutine allows the user to simulate the addition of liquid to a
node. The network data is prepared as though no liquid exists at the node and is solved
that way by the network execution subroutine. Then LQDVAP, which must be called
from Variables 2, corrects the nodal solution in order to account for the liquid. If the
nodal temperature exceeds the boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is calculated and
considered as absorbed through vaporization. If the liquid is completely vaporized the
subroutine deletes its operations. The method of solution holds very well for explicit
solutions, but may introduce some error when large time steps are used with implicit
solutions.

Restrictions-This subroutine must be called from Variables 2.

Calling Sequence-LQDVAP(T,C,A(IC))

where

T is the temperature location of the node.
C is the capacitance location of the node.
A + 1 contains the initial liquid weight.
A + 2 contains the liquid specific heat.
A + 3 contains the liquid vaporization temperature.
A + 4 contains the liquid heat of vaporization.
A + 5 receives the liquid vaporization rate (weight/time).
A + 6 receives the liquid vaporization total (total weight).
A + 7 contains the liquid initial temperature.

Subroutine BIVLV

Purpose-This subroutine allows the user to specify the percentage flow rates
through two parallel tubes with common end points. One tube must consist of a single
flow conductor (Gl) while the other tube may consist of one or more sequential flow
conductors (G2(I), I = 1,N). The ratio of flow through G1 divided by the total flow
may be calculated in any desired manner and must be supplied as the argument W. The
conductor values of either one tube or the other are reduced in order to achieve the de-
sired percentage flow rates irregardless of the pressure drop.

Restrictions-N must be an integer. G2 must address the first of the sequential
conductors in that tube.

Calling Sequence-BIVLV(N,W,G1,G2(DV))

103

MARY E. GEALY

Subroutine LINE

Purpose-This subroutine computes the steady state changes in the thermodynamic
and flow properties through a line of length L. The upstream properties must be de-
fined and supplied. The following equations are simultaneously solved in an iterative
fashion:

puv, = Pdvd (one-dimensional conservation of mass),

where u denotes upstream and d denotes downstream;

u +2 +W = Id + 2 (one-dimensional energy
equation);

Pu = Pd (momentum equation, simplified because of a
very small pressure drop and low velocities);

p = f(X,P,h)

T = g(X,P,h) (equations of state);

XL = h(X,P,h)

Q = h(Wp)L(Tw - T) (energy loss)

Re = W(4A/Wp)/Ap (Re is the Reynolds number)

Pr= Cp ju/K (Pr is the Prandtl number)

h = 0.332 (Re0 5)(Pr 0 3 3 3) for Re < 2100 (laminar flow)

h = 0.023 (Re0 .8)(Pr 0 4) for Re > 2100 (turbulent flow)

Cp, ,u, and K are obtained from subroutine TRNPRT.

Restrictions-Subroutine LINE assumes that the flowing fluid is composed of a per-
fect noncondensable gas and a perfect condensable gas. This assumption involves the
STATE subroutine which is called on. However, LINE does not need the variables XL
and T to evaluate the transport properties and the heat transfer coefficient h for the cal-
culation of Q. The thermodynamic property arguments are upstream properties when
calling LINE, but the downstream thermodynamic properties are in the same locations.

Calling Sequence-
LINE(A,WpL,TWW,A1(IC),A2(IC),A3(IC), ... ,A1O(IC) PTXL ,X,,VPQ)

where

A= flow area
Wp = wetted perimeter

L = tube length (floating point)
Tw = wall temperature

104

NRL REPORT 7656

W
Al
A2
A3
A4
A5
A6

A10
P
T

XL
X
I

V
P
Q

= mass flow rate
= the doublet interpolation array of condensable gas, p vs T
= the doublet interpolation array of noncondensable gas, p vs T
= the doublet interpolation array of condensable gas, k vs T
= the doublet interpolation array of noncondensable gas, k vs T
= the doublet interpolation array of condensable gas, Cp vs T
= the doublet interpolation array of noncondensable gas, Cp vs T
= the doublet interpolation array of condensable gas, heat of vaporization vs T
= pressure
= temperature
= mass fraction of liquid
= mass fraction of noncondensable gas
= enthalpy (floating point)
= v = velocity
= density
= energy lost to wall

Subroutine STATE

Purpose-This subroutine computes the thermodynamic state for a mixture of an
assumed noncondensable gas (hydrogen) and a condensable gas (water vapor). The sub-
routine establishes whether the mixture is superheated or saturated and gives its density
(Pm), temperature (T), and liquid mass fraction (XL). The hydrogen mass fraction (Xh),
mixture pressure (Pm), and mixture enthalpy (1m) are input. Vapor components are
assumed to be perfect gases; that is,

Pv
PV R. VT

Iv = CpVT

Ph
Ph -RhT

Ih = CphT

where subscripts h and v refer to hydrogen and water vapor, respectively. The liquid
constituent is assumed to have the following properties:

PL = 62.4 and IL = Iv - HV,

where

HV = heat of vaporization
Cp = specific heat at constant pressure
R = gas constant.

If the mixture is saturated, PV is related to T by the saturation equation of sub-
routines PSOFTS and/or TSOFP. Mixture properties are obtained from the following
equations:

105

MARY E. GEALY

1.0
Pm = Xh (I -Xh -XL)+ XL

Ph Pv PL

and

IM = XhIh + (1 - XL)Iv - XL(HV).

Restrictions-The restrictions are those that are imposed for perfect gases and incom-
pressible liquids. The pressures must be well below the critical point. A is a doublet in-
terpolation array of HV as a function of temperature T. Im must be a floating-point
number.

Calling Sequence -STATE(X,P,I,p,XL,T,A(IC))

Subroutine PSOFTS

Purpose-This subroutine computes the saturation pressure of water vapor as a
function of gas temperature. The relationship used is

PC X (A + Bx + CX2
o -PT, 1= + /D

where x = Tc -Ts, A, B, C, and D are constants, and Pc and Tc are critical points.

Restrictions-The gas temperature should be between 100 and 1500 C.

Calling Sequence-PSOFTS(TS,P)

Subroutine TSOFP

Purpose-This subroutine computes gas temperature as a function of the saturation
pressure of water vapor, using the same relation as in PSOFTS.

Restrictions-The same restrictions apply to TSOFP as to PSOFTS.

Calling Sequence-TSOFP(P,TS)

Subroutine TRNPRT

Purpose-This subroutine calculates the transport properties of a two-component
gas mixture.

Restrictions-Only a two-component gas mixture is allowed, and the component
properties must have already been evaluated at the desired temperature.

106

NRL REPORT 7656

Calling Sequence-TRNPRT(V1,V2,G1,G2,C1,C2,V,G,C,P1)

where

VN is the viscosity of component N.
GN is the thermal conductivity of component N.
CN is the specific heat of component N.
P1 is the percent (by weight) of component 1.
V, G, and C are the viscosity, thermal conductivity, and specific heat of the mixture.

Subroutine CSGDMP or LSTPCS or QMAP

Purpose-These routines are designed to aid in the checkout of thermal problem
data decks by listing the pseudo-compute sequence. CSGDMP calls upon Variables 1 and
then prints out each relative diffusion node number with the capacitance and CSGMIN
value of the node. For each node, all three routines identify the attached conductors by
relative conductor number and type, and by the relative number of the adjoining node.
CSGDMP also lists the conductance of the attached conductor and the type of the ad-
joining node. Either the SPCS or the LPCS option may be used. While the LPCS option
allows every conductor attached to a node to be identified, the SPCS option identifies
only conductors for the first relative node number on which they occur. After the dif-
fusion nodes are processed, the connection information for the arithmetic nodes is
listed. After listing the above information, control passes to the next sequentially listed
subroutine.

QMAP has all the properties of CSGDMP. In addition, it prints the temperatures of
each node and adjoining node, and the flux between them.

Restrictions-These routines are generally called from EXECTN. CSGDMP and
QMAP should never be called from Variables 1.

Calling Sequence-CSGDMP or LSTPCS or QMAP

Subroutine TSAVE

Purpose-This subroutine generates an external plotting data output file (unit 24)
that can be used with the external plotting option to plot nodal temperature vs time.
TSAVE records each nodal temperature at TIMEN and also saves the actual node
numbers.

Restrictions-This routine should not be called more than 2000 times.

Calling Sequence-TSAVE

107

MARY E. GEALY

Internal Subroutines

Name Name Name

BIT ITRATE SMOPAS
COPY POLYADD TOPLIN
GENM PYMLT1 UNPAK
GENST RTPOLY UPDMOP
HEDCOL SETUP WRTARY
INPUTG SKPLIN WRTLO8
INPUTT

These subroutines are called from other routines and not normally by the user.

ACKNOWLEDGMENTS

The author would like to thank Mr. Richard Perlut of the Mechanical Engineering
Branch, Engineering Services Division, for his suggestions and technical assistance.

108

Appendix A

SAMPLE PROBLEM 1A

ORIGINAL RUN

A perfectly insulated one-dimensional bar has a constant heating rate applied to one
end. Obtain the 10-min transient temperature response, at half-minute intervals, of the
bar ends and at points 1/4, 1/2, and 3/4 of the way along the bar. The bar is initially
at 80'F and receives a constant heating rate of 3.0 Btu/min. The length of the bar is
4 in., and it has a cross-sectional area of 1 sq. in. It has the following material properties:

density = 172.8 lb/ft 3

specific heat = 0.35 Btu/lb0 F

thermal conductivity = 0.2 Btu/in.-min.-0 F

Figure Ala shows a schematic of the physical problem with the nodes appropriately
placed and the dashed lines indicating the lumping of the system for capacitance purposes.
The network representation is illustrated in Fig. Alb.

(a)

(a) Parameter lumping

TI T2 T3 T4 T5

(b) lT T T T T

(b) One-dimensional network

Fig. Al-Representation of a perfectly insulated bar

Capacitors receive the same number as the temperatures but with a C prefix. From
the above information, we immediately calculate

C2 = C3 = C4 = p*V*Cp = 0.035 Btu/OF

Cl = C5 = C2/2.0 = 0.0175 Btu/OF

GI = G2 = G3 = G4 = k*Ac/V = 0.2 Btu/min 0 F,

109

MARY E. GEALY

where V = 2*Ac; length times cross-sectional area.

Since this is not a RECALL run, the first data card should be blank.

To apply explicit forward differencing to this problem, we must utilize the CNFRWD
execution subroutine which requires the short pseudo-compute sequence. Hence, the title
block is as follows:

8

BCD 3THERMAL SPCS
BCD 9SAMPLE PROBLEM NO.IA
END

The nodal block is next and requires the node number, initial temperature, and capaci-
tance of each node be listed.

8

BCD 3NODE DATA
1,80.,.0175,5,80.,.0175

GEN 2,3,1,80.,.035,1.,1.,1.
END

The conductor block requires that each conductor number be listed with the node num-
bers at either end, and the conductor value.

8

BCD 3CONDUCTOR DATA
GEN 194,1,1,1,2,1,.2,1..1*,I.
END

The only control constants required for CNFRWD are as follows:

8

BCD 3CONSTANTS DATA
TIMEND,I0.,OUTPUT,.5,CSGFAC,2.

END

There are no array data and only one execution call; hence,

110

NRL REPORT 7656

1 8 21 25

BCD 3ARRAY DATA
END

F DIMENSION X(100)
BCD 3EXECUTION

F NDIM=100
F NTH=O

CSGDMP
CNFRWD

END

There are no second variables operations, but we must apply the heating rate in the first
variables;

8

BCD 3VARIABLES I

STFSLP (3.,01)
END
BCD 3VARIABLES 2
END

The following completes the data input.

8

BCD 3DUTPUT CALLS
PRNTMP

END
BCD 3END OF DATA

Since PRNTMP lists the relative node numbers, and not the actual ones, the node dic-
tionary will have to be consulted for conversion of relative to actual.

The above problem data deck processed by the CINDA program on the CDC-3800
as a standard run produces the output as given in the following printouts.

NOTE: The only alternative to the BCD 3END OF DATA card is a parameter change.
A new job would require another set of control cards.

111

MARY E. GEALY

fu
I-

0

0

0F

0N.

_ en

v)r
Yo rd

C oi

LO r-

m w

0 0

z z
o ua

In N u

t Nd

O¢d

u w 0!-

C-C

In_
r. D.-. e u-

4 _

_L or 0-

MZ - o

x .

z) -

W 0 N

1- *Wo 0'
ZO! 0'o

uj cr erfr
Ui0. zi,;;. - !

t r n -m _ 0
1 O - 0 a-

V) a Wn o, c Y -i

_ .m¢ zo_U, o *o
- * 0 0 Z U

z. ON) _.- 0

w U U- .0 0. -

Z n- .Z-0.o
mom - -w m 0

112

PROGRAM NAMES
1 77672 SEARCH 00105 1 77603 STFFB 00067 1 76026 GENLNK 00540 1 74614 SPLIT 01026
1 74272 SKIP 00322 1 72717 CODERD 01353 1 71712 PSUEDO 00661 1 71627 ORMIN 00063
1 71417 PACK43 00210 1 71345 BIT 00052 1 71051 PRESUS 00274 1 70731 WRTBLK 00120
1 70673 WRTSCOPE 00036 1 65267 CINDA4 03404 1 62747 BLKCRD 01170 0 71134 DATARD 06643
1 62141 PREPRO 00605 0 60445 INITAL 10467 1 57571 FINAL 02350 1 57335 ALLOC. 00234
0 56177 DOH. 02246 1 57303 Q7QLOOLC 00032 0 54622 lOP. 01355 1 57072 QBQERROR 00211
1 57005 BFI. 00065 1 56740 ENC. 00045 1 56705 DEC. 00033 0 54570 0801FUNI 00032
0 54544 EFT, 00024 0 54472 SLI. 00052 0 54430 Q8INOUT4 00042 0 53654 10. 00554
o 53562 HSP. 00072 0 3527 OQBIFIOC 00033 0 53471 STHo 00036 0 53424 TSHM 00045
0 53407 REW. 00015 o 52764 lOS. 00423 0 52604 GIOREINT 00160 0 52420 QlOSTORE 00164
0 52342 QAQENTRY 00056

PROGRAM EXTENS.
NONE

LABELED COMMON
1 76566 CRDHLK 01015 1 76014 TAPE 00012 1 75775 DATA 00017 1 75657 SUBLST 00116
1 75654 QLOGIC 00003 1 75642 PLOGIC 00012 1 72573 LOGIC 00124 1 64613 NARRAY 00454
1 64137 DIMARY 00454 1 62746 WJS 00001

NUMBERED COMMON

0 23042 4 17500 1 00001 1 17500 1 17501 3 17500 1 37201 2 17500 z
ENTRY POINTS r
0 77777 SENTRY 1 77675 SEARCH 0 52342 O8ODICT. 1 77607 STFFB
1 76214 GENLNK 0 52420 Q3Q10040 0 52655 03000040 0 53303 THEND.
1 63176 BLKCRD 0 53412 REW. 0 53430 TSH. 0 53475 TH.t

co 0 53275 QNSINGLo 1 74656 SPLIT 1 74275 SKIP 0 53536 O8OIFEOF 0
0 53565 BSP. o 53657 TSs. 0 53671 STB. 0 54446 080INP4 d
1 73077 CODERD o 72636 DATARD 0 54500 SLO. 0 54472 SLI. 3
1 71760 PSUEDO 1 71422 PACK43 1 71632 ORMIN 0 54547 EFT.
1 71345 B1T 1 71110 PRESUB 1 66371 CINDA4 1 70701 WRTSCOPE CA
0 54573 ORUIFUNI 1 70764 WRTBLK 1 56710 DEC. 1 56743 ENC.
1 57020 BFO. 1 62214 PREPRO 0 52346 QsQENTRY 0 67407 INITAL
1 60643 FINAL 1 57074 Q8QERROR 0 52343 EXIT 0 54430 Q8QoUT4
0 54625 lOP. 0 53037 Q8QHIST. 1 57303 O7QLOoLC 0 53004 lOS.
0 53307 IOR. 0 56223 IOH. 0 60320 .TSERR. 0 56177 BCDBUF.
0 52764 I°E. 0 53156 QO8CHAIN 0 53300 QNDOUBL9 0 55644 ETAB.
1 57473 ALLOC. 1 57343 RETURN. 1 57447 BUSY. 1 57456 IRETURY.
1 57537 ALLOCIN. 06 0013 ELO. 0 60277 .REPCNT. 1 57072 ORERRORN
1 57073 QSNOTRAC 1 57206 QsQERSET 1 57010 3FI. 0 54012 ELs.
0 53532 QHOTFIOC 0 52604 Q10U0100 0 52604 Q1001100 0 52623 01002100
0 52627 01U03100 o 52633 Q0Qo4100 0 52637 QlQo05oo 0 52607 G3Qo0140
o 52664 Q3Qol040 0 52615 03001140 0 52723 03002040 0 52673 03002140
0 52732 03Q03040 0 52701 Q3Qo3140 0 52741 030o4040 0 52707 03004140
0 52750 03005040 0 52715 Q3Q05140 0 52506 01010010 0 52506 1Q010020
0 52454 01Q10030 0 52527 00loloo 0 52501 01010120 0 52460 01010130
o 52535 QIQ10200 0 52463 01010210 0 52463 01010230 0 52527 01010300
0 52512 01010310 0 52501 0lQ10320 0 52522 Q0Q10400 0 52515 G0100410
0 52474 Q1U10420 0 52474 QlQ10430 0 52420 03010140 0 52420 03010240
0 52420 03Q10340 0 52420 03010440

EXECUTION STARTED AT 12R -02

BCD 3THERMAL SPCS
BCD 9SAMPLE PROBLEM NO.1A
END
BCD 3NODE DATA

1980.#.017595980.,.0175
GEN 2,3,1,80., .035,1.1.,1.
ENO

RELATIVE NODE NUMBERS

1 THRU 5 I
BCD 3CONDUCT0R DATA
GEN 1'4'1 '1'192'10*2'1.1 11-
END

RELATIVE CONDUCTOR NUMBERS

1 THRU 4 1
BCD 3CONSTANTS DATA

TIMEND, 10.OUTPUT,*5,CSGFAC*2.
END
BCD 3ARRAY DATA
END

DIMENSION X(100)
BCD 3EXECUTION

NOIM l=o
NTH 0

CSGOMP
I-' CNFRWD

END
BCD 3VARIABLES 1

STFSEP (3.,Ql)
END
BCD 3VARIABLES 2
END
BCD 3OUTPUT CALLS

PRNTMP
ENO

ACTUAL NODE NUMBERS

5 2 4

ACTUAL CONDUCTOR NUMBERS

2 3 4

F

F
F L4

NRL REPORT 7656

I-
z

a:
a.1

a.-w

I-
U.

M

o 3

n z

LU U
2

m
tA
w
D

0

In
X0.

0
CD
U'4 U

115

MARY E. GEALY

40
z

_ 1-

a _
;-

or z

J~ 1

116

07/13/73 PAGE NO, 1

PROGRAM LINKO
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN DTIMEU, TIMEND9 CSGFAC9

1NLOOP D OTMPCA9 OPEITR9 OTIMEHv DAMPA 0
10AMPO , ATMPCA, BACKUP, TIMEO , TIMEM 9
1DTMPCC, ATMPCC, CSGMIN, OUTPUT, ARLXCA,
1LOOPCT, DTIMELV DTIMEI9 CSGMAX9 CSGRAL9
ICSGRCL9 DRLXCA, DRLXCC, LINECT9 PAGECT9
lARLXCC9 LSPCS ' ENGBAL, BALENG, NOCOPY, z
1NCSGM , NDTMPC, NARLXC9 NATMPC9 ITEST * '
1JTEST * KTEST , LTEST , MTEST , RTEST 9 r
ISTEST . TTEST , UTEST , VTEST , LAXFAC l
1, IDCNT
COMMON /DIMENS/ NNTNNDNNCNRGeNNGNCONNARYLSEQDUM19NUM2 o
DIMENSION H(20) °
COMMON /PRNT/ NT
COMMON /XSPACE/ NOIM, NTH, X
COMMON /LOGIC/ LNODE, LCOND9 LCONST, LARRAY
LOGICAL LNODE, LCOND, LCONST, LARRAY
DIMENSION Tt 5)C(5)9Q(5)qG(4)tK(l)tA(1).1CSEQ(6)tX(100), NTC 5)
LNODE = TRUE,
LCONO = *TRUE.
LCONST = .FALSE.
LARRAY .FALSE.
CALL INPUTT
CALL EXECTN
GO TO 1
END

FTN5o4A

IDENT LINKO
PROGRAM LENGTH 00033
ENTRY POINTS LINKo 00003
BLOCK NAMES

TITLE 00024
TEMP 00005
CAP 00005
SOURCE 00005
COND 00004
PCS 00006
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00005
XSPACE 00146
LOGIC 00004

EXTERNAL SYMBOLS
O8GENTRY
03010040
Q8QDICT.
INPUTT
EXECTN

00126 SYMBOLS

tl1

5.4DS LINKO 07/13/73 ED 0 PAGE NO, 2

07/13/73

SUBROUTINE EXECTN
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEU, TIMEND. CSGFAC9
INLOOP * DTMPCAO OPEITR, DTIMEH. DAMPA 9
1DAMPD , ATMPCA, BACKUP, TIMED * TIMEM ,
lDTMPCC, ATMPCC, CSGMIN9 OUTPUT. ARLXCA,
lLOOPCT, oTIMEL, DTIMEII CSGMAX, CSGRAL,
1CSGRCL, DRLXCA, DRLXCC9 LINECT, PAGECTo
lARLXCC, LSPCS , ENGBAL, BALENG, NOCOPY,
lNCSGM , NDTMPC, NARLXC9 NATMPC, ITEST ,
1JTEST , KTEST , LTEST , MTEST , RTEST 9
ISTEST , TTEST , UTEST * VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDNNCoNRGNNGNCONNARYLSEQDUMlNUM2
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIMi NTH, X
EQUIVALENCE (K(1)tXK()
DIMENSION T(I) CXl)* QG1), G(l), K(1)o A(l) XK(1),X(l)
19 CSEQ(1) 9 NT(l)
NDIM z 100
NTH = 0
CALL CSGDMP
CALL CNFRWD
RETURN
END

z
w
Vl

F
F

I-A

PAGE NO,FTN5.4A

MARY E. GEALY

N

z

ui
CD4
0.

0
IL

C>

a

p-

9--c

z

1-

BI-

2

o: o o o o> o o o ~ o o > o oo
o o~ cI a (o oo oo oo o CD

o> o o ID o o~ o o o o o o> o o~

m

'2

i-
Z- Id U 1->-0Z U W

> J I z on v cr 4U g O C

)J .-. W1140Z000Z -. '2iZ C D IZ
x 1-1-U QCU 4) (o0 o0
_~j UVI um y 4 LI Om x ca, IU)

0 0
; Z aU) 2 2~~~~

Z 0<
U 4
uj O >- Y-

X t z -j

a 2 Jr
tL hJ rr

4-J

z
xI

.-Lj

N
N

t)0
4n

120

SUBROUTINE VARBL1
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /CONO/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXcON/ TIMEN 0TIMEU- TIMENDO CSGFAC9

INLOOP * OTMPCA, OPEITR, OTIMEMH OAMPA *
lOAMPD * ATMPCA, BACKUP. TIMEO , TIMEM .
IDTMPCC, ATMPCC, CSGMIN, OUTPUT, ARLXCAl
ILOOPCT, DTIMEL9 DTIMEI CSGMAX, CSGRAL9
ICSGRCL, DRLXCA, DRLXCC, LINECT, PAGECT,
1ARLXCC, LSPCS , ENGBAL, RALENG, NOCOPY9
1NCSGM , NOTMPC9 NARLXC9 NATMPC, ITEST 9
IJTEST , KTEST , LTEST # MTEST , RTEST ,
1STEST , TTEST , UTEST , VTEST , LAXFAC
1, IDCNT

COMMON XDIMENSX NNTNNDONNCNRGNNGNCONNARYLSEO,DUMI,NUM2 Zx
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIMv NTH, X

1-4 EQUIVALENCE (K(1),XK(l)) m
DIMENSION T(I), C01), (1), G(O), K(I)o A(1) ,XK(l),X(l) O
1, CSEQ(1) 9 NT(1) :
CALL STFSEP(3.,oot))
RETURN
END

FTN5.4A 07/13/73 PAGE NO. I

5.4DS VARBLI 07/13/73 ED 0 PAGE NO. 2

IDENT VARBLI
PROGRAM LENGTH 00016
ENTRY POINTS VARBL1 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOJRCE 00001
COND 00001
PCS 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
O8QDICT.
STFSEP

00121 SYMBOLS

by D ~tj

SUBROUTINE VARHL2
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEU, TIMENDo CSGFAC9

INLOOP , DTMPCA, OPEITR, DTIMEH, DAMPA ,
IDAMPD , ATMPCA, RACKUP. TIMEO , TIMEM ,
1DTMPCC. ATMPCC, CSGMIN, OUTPUT, ARLXCA9
ILOOPCT, DTIMEL, DTIME!, CSGMAX, CSGRAL,
ICSGRCL, DRLXCA9 DRLXCC, LINECT, PAGECT,
IARLXCC. LSPCS , ENGBAL. BALENG, NOCOPY,
1NCSGM , NOTMPC, NARLXC, NATMPC9 ITEST ,1JTEST , KTEST , LTEST , MTEST * RTEST ,
ISTEST , TTEST , UTEST , VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDNNCoNRGNNGNCONNARYLSEQDUM1,NUM2 Z
DIMENSION H(20'
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM# NTH9 X
EQUIVALENCE (K(l) XK(l))
DIMENSION T(l)t CO). QC1)t G(1), K(1) , A(I) vXK(l)X(l)

o "1, CSEQ(l) * NT(1)
RETURN
END

FTN5.4A 07/13/73 PAGE NO. 1

5.4DS VARBL2 07/13/73 ED 0 PAGE NO, 2

IDENT VARBL2
PROGRAM LENGTH 00012
ENTRY POINTS VARBL2 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOURCE 00001
CONO 00001
PCS 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
Q8QDICT,

00120 SYMBOLS

SUBROUTINE OUTCAL
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ O
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEUv TIMENDO CSGFACt
INLOOP , DTMPCA, OPEITR, OTIMEHM DAMPA 9
IDAMPD * ATMPCAI BACKUP9 TIMEO * TIMEM 9
lDTMPCC# ATMPCC, CSGMIN, OUTPUT, ARLXCA9
ILOOPCT, DTIMEL9 DTIMEI1 CSGMAX, CSGRAL9
ICSGRCLo DRLXCA, ORLXCC, LINECT, PAGECT,
IARLXCC, LSPCS , ENGBAL, BALENG, NOCOPY,
INCSGM * NOTMPC9 NARLXC9 NATMPC* ITEST ,
IJTEST , KTEST 9 LTEST , MTEST , RTEST ,
1STEST * TTEST , UTEST , VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDONNCoNRGNNGNCONNARYLSE0OUM1 NUM2 Z
DIMENSION H(2 0)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM9 NTH, X
EQUIVALENCE (K(1),XK(l))
DIMENSION TO1), C(I)o (10) GO), K(1), AC!) XK(l)vX(1)
1, CSEQ(l) , NT(l)
CALL PRNTMP
RETURN
END

FTN5,4A 07/13/73 PAGE N0, I

WENT OUTCAL
PROGRAM LENGTH 00014
ENTRY POINTS OUTCAL 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOJRCE 00001
COND 00001
PCS 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
080DICT.
PRNTMP

00121 SYMBOLS
LOAD
RUN,5,2500

M

07/13173 ED 0 PAGE NO. 25,4DS OUTCAL

PROGRAM NAMES
1 77744 LINKO 00033 1 77371 EXECTN 00021 1 77353 VARBLl 00016 1 77341 VARBL2 00012
1 77325 OUTCAL 00014 1 77253 BIT 00052 1 75005 I0N. 02246 1 74753 Q7OLODLC 00032
1 74542 8QsERROR 00211 1 74306 ALLOC. 00234 1 74165 STNDRD 00121 1 73657 UNPAK 00306
1 73571 TOPLIN 00066 1 73517 SLI. 00052 1 73455 OsINOUT4 00042 1 73417 STH, 00036
1 72643 1O8. 00554 1 72463 OIOREINT 00160 1 72040 IOS. 00423 1 70463 lOP. 01355
1 70335 PRNTMP 00126 1 70247 STFSEP 00066 1 67107 CNFRWO 01140 1 65445 CSGDMP 01442
1 64674 INPUTT 00551 1 64510 QjQSTORE 00164 1 64432 OBOENTRY 00056

PROGRAM EXTENS.
NONE

LABELED COMMON
1 77720 TITLE 00024 1 77713 TEMP 00005 1 77706 CAP 00005 1 77701 SOURCE 00005
1 77675 COND 00004 1 77667 PCs 00006 1 77666 KONST 00001 1 77665 ARRAY 0000)
1 77603 FIXCON 00062 1 77571 DIMENS 00012 1 77564 PRNT 00005 .1 77416 XSPACE 00146
1 77412 LOGIC 00004

NUMBERED COMMON
NONE

ENTRY POINTS
0 77777 SENTRY 1 77747 LINKO 1 64436 QBQENTRY 1 64510 03010040 z
1 64432 Q8QDICT. 1 64711 INPUTT 1 77374 EXECTN 1 66110 CSGDMP I
1 67143 CNFRWD 1 77356 VARBL1 1 70252 STFSEP 1 77344 VARBL2
1 77330 OUTCAL 1 70356 PRNTMP 1 70466 TOP. 1 72113 QBQHIST. LT
1 72357 THEND. 1 72534 03Q00040 1 64433 EXIT 1 72646 TSB.
1 73423 STH. 1 73473 Q8QINP4 1 73517 SLI. 1 72351 ONSINGL:.
1 73630 TOPLIN 1 73664 UNPAK 1 74246 STNDRD 1 74444 ALLOC.
1 74314 RETURN. 1 74420 BUSY. 1 74427 IRETURN. 1 74544 QBOFRROR
1 74753 07QLODLC 1 72354 ONDOUBLe 1 72060 I059 1 72363 TOR.
1 72040 TOE. 1 75031 IOH. 1 75005 3CDBUF, 1 73525 SLO. 01
1 77253 BIT 1 76621 ELD. 1 77105 *REPCNT. 1 77126 .TSERR.
1 74542 QOERRORN 1 74543 QsNOTRAC 1 74656 QsQERSET 1 74510 ALLOCIN.
1 73455 Q800UT4 1 73001 ELB. 1 72660 ST8. 1 72463 01000100
1 72463 QIQ01100 1 72502 01002100 1 72506 01003100 1 72512 01004100
1 72516 QlQ05100 1 72466 03000140 1 72543 03001040 1 72474 03001140
1 72602 03002040 1 72552 03002140 1 72611 03003040 1 72560 03003140
1 72620 Q3u0404O 1 72566 03004140 1 72627 03005040 1 72574 03Qo5140
1 72232 Q8QCHAIN 1 71505 ETAB. 1 64576 0101oolo 1 64576 01010020
1 64544 01Q01030 1 64617 01010100 1 64571 Q0Q10120 1 64550 01010130
1 64625 QI010200 1 64553 Q0Q10210 1 64553 01010230 1 64617 Q1010300
1 64602 0U110310 1 64571 Q1010320 1 64612 01010400 1 64605 01010410
1 64564 Q1010420 1 64564 0G110430 1 64510 03010140 1 64510 03010240
1 64510 Q3010340 1 64510 03Q10440

EXECUTION STARTED AT 1831 -41

PAGE
CHRYSLER IMPROVED NUMERICAL DIFFERENC1JG ANALYZER - C00045 (NRL EDITED)

SAMPLE PROBLEM NO.IA

A 5 NODE PROBLEM USING SPCS
NODE 1 HAS THE CSGMIN OF 87.5000-003, NODE 1 HAS THE CSGMAX OF 87.5000-003

NODE C-VALUE CSG-VALUE CONO TYPE G-VALUE TO NODE TYPE
1 17.500-003 87.500-003

1 LIN 20.000-002 3 DIFF
2 17.500-003 87.500-003

4 LIN 20.000-002 5 DIFF
3 35.000-003 87.500-003

2 LIN 20.000-002 4 DIFF
4 35.000-003 87.500-003

3 LIN 20.000-002 5 DIFF
5 35.000-003 87.500-003

THIS NODE HAS BEEN PROCESSED

NRL REPORT 7656

<
a1

a
-a

IC

-K

Inal

z0
I-.

0

129

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - C00045

SAMPLE PROBLEM NO.lA

(NRL EDITED)

* 4 * *
TIME 00.00000.000

1 THRU

* * * *
TIME 50.00000-002

1 THRU

*. * * *
TIME 10.00000-001

1 THRU

DTIMEU 00.00000.000 CSGMINC

s 80.000000+000

OTIMEU 21.40625-003 CSGMIN(

5 10,827633+001

DTIMEU 21.40625-003 CSGMIN(

5 12.076382+001

1) 87.50000-003 OTMPCC(1) 00,00000.000 ARLXCC(

80.000000.000 80.000000+000 80.000000+000

1) 87.50000-003 DTMPCC(1) 62.31991-002 ARLXCC(

82.523666.000 959775126.000 87.903573.000

1) 87.50000-003 DTMPCC(1) 48.58940-002 ARLXCC(

91.468321+000 10.774199+001 98.616072+000

0) 00.00000.000

80.000000. 000

0) 00.00000.000

83,778445,000

0) 00.00000.000

93.240150.000

* . * *
TIME 15.00000-001

1 THRU

DTIMEU 21.40625-003 CSGMINC

5 13.177193.001

1) 87.50000-003 DTMPCC(

10.188878*001 11,8E5640

1) 46.32151-002 ARLXCC(

'4.001 10.933036+001

0) 00.00000.000

10.374667.001

t-a * * * *
co TIME 20.00000-001
0

1 THRU

* * e *
TIME 25.00000-001

1 THRU

* v * e
TIME 30.00000-001

1 THRU

DTIMEU 21.40625-003 CSGMIN(

5 14.253495+001

OTIMEU 21.40625-003 CSGMIN(

5 15.325732'001

DTIMEU 21.40625-003 CSGMINC

5 16.397295.001

1) 87.soooo00-3 DTMPCC(1) 45.94534-002 ARLXCC(

11.255433+001 12,941279.001 12.004464.001

1) 87.50000-003 DTMPCC(1) 45.88294-002 ARLXCC(

12.326054+001 14.013279+ool 13.075893'001

1) 87.50000.003 DTMPCC(1) 45.87259-002 ARLXCCC

13.397348+001 15,084803*001 14.147321.001

tt
0T

0) 00.00000.000

11.442650.001

0) 00.000004000

12.513507'o00

0) 00.00000.000

13,584840.001

* * 0 *
TIME 35.00000-001

1 THRU

DTIMEU 21.40625-003 CSGMIN(

5 17.468746+001

1) 87.50000-003

14.468754.001

DTMPCC(1) 45.87088-002 ARLXCC(

16.156247*001 15.218750+001

0) 00,00000.000

14.656253.001

* * 8 *

TIME 40.00000-001 DTIMEU 21.40625-003 CSGMIN(

1 THRtJ 5 18.540178+001

8 e * *
TIME 45.00000-001 DTIMEU 21.40625-003 CSGMIN(

1 THRU 5 19.611607'001

1) 87.50000-003 DTMPCC(1) 45.87059-002 ARLXCC(

15.540179+001 17.227678.001 16.290179+001

1) 87.50000-003 DTMPCC(1) 45.87055-002 ARLXCC(

16.611607+001 18,299107'001 17.361607+001

0) 00.00000.000

15.727679+001

0) 00.00000+000

16.799107#001

PAGE 2

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - CO0045

SAMPLE PROBLEM NO.IA

PAGE 3
(NRL EDITED)

* * * *
TIME 50.00000-001

1 THRU

DTIMEU 21,40625-003 CSGMIN(

5 20,683036.001

1) 87*50000-003 DTMPCCf 1) 45.87054-002 ARLXCCI

17.683036+001 19,370536*001 18,433036*001

0) 00.00000.000

17,870536'0001

* * * *
TIME 55.00000-001

1 THRU

* * * *
TIME 60.00000-001

1 THRU

* * * *
TIME 65.00000-001

1 THRU

* * * *
I-k TIME 70.00000-001

1 THRU

* * * *
TIME 75.00000-001

1 THRU

DTIMEU 21.40625-003 CSGMIN(

5 21.754464.001

DTIMEU 21.40625-003 CSGMIN(

5 22.825893.001

DTIMEU 21.40625-003 CSGMIN(

5 23.897321+001

DTIMEU 21.40625-003 CSGMIN(

5 24.968750*001

DTIMEU 21.40625-003 CSGMIN(

5 26.040179.001

1) 87.50000-003 DTMPCC(

18.754464+001 20.4'b 19f

1) 45,87054-002 ARLXCC(

54.001 19.504464.001

1) 87.50000-003 DTMPCC(3) 45.87054-002 ARLXCC(

199825893*001 21.513393'001 20.575893*ool

1) 87.50000-003 OTMPCC(3) 45.87054-002 ARLXCC(

20.897321.001 22.584821+001 21.647321.001

1) 87.50000-003 DTMPCC(1) 45987054-002 ARLXCC(

21.968750.001 23.656250.001 22.718750#001

1) 87.50000-003 DTMPCC(1) 45.87054-002 ARLXCC(

23.040179.001 24,727679.001 23.790179.001

0) 00.00000.000

18.941964.001

0) 00.00000.000

20.013393#001

0) 00.00000.000

21.084821*001

0) 00.00000.000

22.156250+001

0) 00.00000.000

23.227679.001

* * * *
TIME 80.00000-001

I THRU

* * * *
TIME 85.00000-00I

I THRU

* e * *
TIME 90.00000-001

1 THRU

* * * .
TIME 95.00000-001

1 THRU

DTIMEU 21.40625-003 CSGMIN(

5 27.111607'001

OTIMEU 21.40625-003 CSGMIN(

5 28.183036.001

DTIMEU 21.40625-003 CSGMIN(

5 29.254464+001

DTIMEU 21.40625-003 CSGMINC

5 30.325893+001

1) 87.50000-003

24*111607 001

DTMPCC(1) 45.87054-002 ARLXCC(

25*799107+001 24*861607.001

1) 87.50000-003 DTMPCC(1) 45S87054-002 ARLXCC(

25.183036.001 26,870536.001 25.933036,001

1) 87,50000-003 DTMPCC(1) 45,87054-002 ARLXCC(

26.254464+001 27.941964.001 27.004464+001

1) 87.50000-003 DTMPCC(1) 45.87054-002 ARLXCC(

27.325893'001 29.013393*001 28.o758930oo1

0) 00.00000.000

24*2991076001

0) 00.00000.000

25.370536*001

0) 00.00000+000

26.441964.001

0) 00.00000.000

27.513393'001

ez

1

Co_t

cv
cn

CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - C00045

SAMPLE PROBLEM N0.1A

* * * *
TIME 10.00000o 000 DTIMEU 21.40625-003 CSGMIN(

I THRU 5 3i.39732i0oo1

1) 87.50000-003 DTMPCC(1) 45.87054-002 ARLXCC(

28.397321+o01 30.084821+001 29.147321+001

0) 00.00000+000

28.584821'001

END OF DATA

I-A
Co
blo

PAGE
(NRL EDITED)

4

JOB MESSAGES
JO8001713' 3009899RCC

NEED 09 = MT m(CINDA MASTER) ED=01,RL.01,DATE=
ST,LPOO

LP 000 ASSIGNED
RELEASED 9=MT16=(CINDA MASTER) EDzO1,RL=01,DATE=052373,RC'999

CO F

SEQUENCE NUMBER 001713 TERMINATED AT 183150 ELAPSED TIME= 00 HRS. 04 MIN. 01 SEC. OR 240666 MILLISECONDS
MMMMMMMMMMMMMMMMM~MM4MUMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMm

THE TOTAL NUMBER OF LINES PRINTED FOR THIS JOB WAS 600

~~~~~~~~~~~~~~~ E!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1
Cok 11
Ci 



NRL REPORT 7656

SAMPLE PROBLEM NO. 1A (Continued)

TSAVE AND PLOT RUN

This is an example of a TSAVE run that was made after the problem had been satis-
factorily debugged and run. Since that run had produced printed output, all calls to out-
put subroutines were removed from the deck to save processing time. Hence, the Execu-
tion block is now

1 7 21 25

F DIMENSION X( 100)
BCD 3EXECUTION

F NDIM = 100
F NTH =0

END

TSAVE is the only subroutine in Output Calls.

8 12

BCD 3OUTPUT CALLS
TSAVE

END

Since the time and temperature limits were determined from the output in the previ-
ous run, it is possible to supply the plotting data so that the plot program can be run
immediately after the CINDA problem (in the same job). This eliminates the need for
equipping the TSAVE output tape (tape 24). The plotting data are as follows:

1 12 22 32 42

card 1 CINDA SAMPLE PROBLEM IA
card 2 0.00 10.00 0.00 320.00
card 3 (blank)

EOF

The above plot data and revised problem data deck for problem 1A produce the
following output and plots when processed on the CDC-3800 and plotted on the
CalComp 565 plotter (the actual dimensions of the X and Y axes are 7 and 9 in., re-
spectively). Plots of the data (Fig. A2a-e) follow the printouts.

135



SEQUENCE 01712 STARTED PRINTING 07/13/73 AT 185627 ON LP01
DRUM SCOPE 2.1 COMPUTER TWo, MAX. DEMAND IS 570008 VERSION 004 10/31/72
SEQUENCE NUMBER 001712 STARTED AT TIME 183152 DATED 07/13/73
JOB(5)9408008009899RCC95
EQUIPO9=(CINDA MASTER,1,19999) RotHloDA
***BINARY DECK***
BANKP(0),/4/
LOAD,09
RUN! 1000

Co 

O to~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~J



PROGRAM NAMES
1 77672 SEARCH 00105 1 77603 STFFB 00067 1 76026 GENLNK 00540 1 74614 SPLIT 01026
1 74272 SKIP 00322 1 72717 CODERD 01353 1 71712 PSUEDO 00661 1 71627 ORMIN 00063
1 71417 PACK43 00210 1 71345 BIT 00052 1 71051 PRESUB 00274 1 70731 WRT8LK 00120
1 70673 WRTSCOPE 00036 1 65267 CINDA4 03404 1 62747 BLKCRD 01170 o 71134 DATARD 06643
1 62141 PREPRO 00605 0 60445 INITAL 10467 1 57571 FINAL 02350 1 57335 ALLOC. 00234
o 56177 IOHe 02246 1 57303 Q7QLODLC 00032 0 54622 lOP. 01355 1 57072 O8OERROR 00211
1 57005 BFI. 00065 1 56740 ENC. 00045 1 56705 DEC. 00033 0 54570 8Q8IFUNI 00032
0 54544 EFT. 00024 0 54472 SLI. 00052 0 54430 OSINOUT4 00042 0 53654 IOB 00554
o 53562 BSP. 00072 0 53527 QSQIFIOC 00033 0 53471 STHM 00036 0 53424 TSH, 00045
0 53407 REW, 00015 o 52764 IOS. 00423 0 52604 O1OREINT 0016o 0 52420 010OTORE 00164
0 52342 QsOENTRY 00056

PROGRAM EXTENS.
NONE

LABELED COMMON
1 76566 CRDBLK 01015 1 76014 TAPE 00012 1 75775 DATA 00017 1 75657 SUBLST ool06
1 75654 QLOGIC oooo3 1 75642 PLOGIC 00012 1 72573 LOGIC 00124 1 64613 NARRAY 00454
1 64137 DIMARY 00454 1 62746 WJS 00001

NUMBERED COMMON
0 23042 4 17500 1 00001 1 17500 1 17501 3 17500 1 37201 2 17500 z
ENTRY POINTS
0 77777 SENTRY 1 77675 SEARCH 0 52342 080DICT, 1 77607 STFFB
1 76214 GENLNK 0 52420 Q3Q10040 0 52655 03000040 0 53303 THENOD

>A 1 63176 BLKCRD 0 53412 REW. 0 53430 TSH. 0 53475 STH, 0
co o532T5 QNSINGL. 1 74656 SPLIT 1 74275 SKIP 0 53536. 080IFEOF

0 53565 sP. 0 53657 TSB. 0 53671 STB5 0 54446 Q8OINP4
1 73077 CODERD 0 72636 DATARD 0 54500 SLO. 0 54472 SLI, C
1 71760 PSUEDO 1 71422 PACK43 1 71632 ORMIN 0 54547 EFT,
1 71345 BIT 1 71110 PRESUB 1 66371 CINDA4 1 70701 WRTSCOPE C

0 54573 QBQIFUNI 1 70764 WRTBLK 1 5671o DEC. 1 56743 ENC,
1 57020 BFO. 1 62214 PREPRO 0 52346 OBOENTRY 0 67407 INITAL
1 60643 FINAL I 57074 QsQERROR 0 52343 EXIT 0 54430 Q8QOUT4
0 54625 lOP. 0 53037 Q8QHIST. 1 57303 07TLODLC 0 53004 IOS.
0 53307 OR. 0 56223 IOH. 0 60320 .TSERR, 0 56177 SCOBUF,
0 52764 OE. 0 53156 Q8QCHAIN 0 53300 QNOOUBL* 0 55644 ETAR,
1 57473 ALLOC. 1 57343 RETURN. 1 57447 BUSY. 1 57456 IRETURN,
1 57537 ALLOCIN. 0 60013 ELD. 0 60277 ,REPCNT, 1 57072 08ERRORN
1 57073 Q8NOTRAC 1 57206 Q8QERSET I 57010 BFI* 0 54012 ELs.
0 53532 QBQIFIOC 0 52604 QlQ00100 0 52604 01901100 0 52623 01902100
0 52627 Q0103100 0 52633 QlQ04100 0 52637 01Q05100 0 52607 0300n140
0 52664 03001040 0 52615 Q3Q01140 0 52723 03002040 0 52673 03002140
0 52732 Q3Q03040 0 52701 03Qo3140 0 52741 03004040 0 52707 93004140
0 52750 Q3Qo5o40 0 52715 93905140 0 52506 01010010 0 52506 01910020
0 52454 Q1910030 0 52527 01910100 0 52501 01910120 0 52460 01010130
0 52535 Ql1Q0200 0 52463 01QIO210 0 52463 91010230 0 52527 01010300
0 52512 QIQ10310 0 52501 91910320 0 52522 01010400 0 52515 01910410
0 52474 1Q910420 0 52474 91Q90430 0 52420 03010140 0 52420 93010240
0 52420 Q3010340 0 52420 03Q10440

EXECUTION STARTED AT 1832 -20



HCD 3THERMAL SPCS
SCD 9SAMPLE PROBLEM NO.1A
ENO
BCD 3NOOE DATA

1,800..0175,5t80.-.0175
GEN 2.3,1,80.,.035,1.,1,,1.
ENf

RELATIVE NOOE NUMBERS

I THRU 5 I
BCD 3CONDUCTOR DATA
GEN 19491 .1912.1w9.2s 1.gl.t-
END

RELATIVE CONDUCTOR NUM8ERS

1 THRU 4
BCD 3CONSTANTS DATA

TIMEND910.,0UTPJT9.5,CSGFAC,2.
END
BCO 3ARRAY DATA
END

DIMENSION X( 100)
HCD 3EXECUTION

NDIM = 100
NTH 0

co CNFRWD
00 END

8CD 3VARIABLES I
STFSEP (3.901)

END
BCD 3VARIA8LES 2
ENO
bCD 3OUTPUT CALLS

TSAVE
END

ACTUAL NODE NUMBERS

5 2 3 4

ACTUAL CONDUCTOR NUMBERS

2 3 4

F

F
F

L~j
EJ.



NRL REPORT 7656

.4
U)i -

0.

o iI nz
uI

z

in

zw
ID

z
en U

139



MARY E. GEALY

0z

-4- -x

. ii

_ -or II

-:a-
ILMD ..

_X 1

140



07/13P73

PROGRAM LINKO
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , OTIMEU, TIMEND, CSGFACi
INLOOP , DTMPCAt OPEITR9 DTIMEHN DAMPA 9
lDAMPD , ATMPCAv RACKUP9 TIMEO , TIMEM ,
lDTMPCC, ATMPCC, CSGMIN9 OUTPUT, ARLXCA,
ILOOPCT, DTIMEL, DTIMEI CSGMAX, CSGRALV
ICSGRCLo ORLXCAt DRLXCC, LINECT, PAGECT,
IARLXCC, LSPCS 9 ENGBAL9 BALENG, NOCOPY,
1NCSGM , NOTMPC, NARLXC9 NATMPCv ITEST o
IJTEST , KTEST * LTEST , MTEST , RTEST I
ISTEST , TTEST , UTEST , VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNND9NNC9NRGNNGNCONNARYLSEQGDUM1,NUM2
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM, NTH, X
COMMON /LOGIC/ LNODE9 LCOND9 LCONST9 LARRAY
LOGICAL LNODE, LCOND9 LCONST, LARRAY
DIMENSION T( 5)'C( 5)qQ( 5)vG( 4)tK( I)OA(
ICSEQ( 6)oX( 100)v NT( 5)
LNODE a TRUE.
LCOND a *TRUE.
LCONST 2 *FALSE.
LARRAY ' .FALSE*
CALL INPUTT
CALL EXECTN
GO TO 1
END

1 ) ,

z

r
CD

01

:z
~3
cn

cnt

FTN5.4A PAGE NO,

p



ED 0 PAGE NO. 2

PROGRAM LENGTH
ENTRY POINTS LINKO
BLOCK NAMES

TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
LOGIC

EXTERNAL SYMBOLS
Q80ENTRY
Q3Q10040
QRQDICT.
INPUTT
EXECTN

00126 SYMBOLS

00033
00003

00024
00005
00005
00005
00004
00006
00001
00001
00062
00012
00005
00146
00004

IDENT LINKO

4
�0-
�d

0
0
tij

t-,
O�

07/13/735.4DS LINKO



07/13/A3

SUBROUTINE EXECTN
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEU, TIMENDO CSGFAC9
INLOOP , DTMPCA# OPEITR# DTIMEH, DAMPA #
1DAMPD , ATMPCA, BACKUP9 TIMEO , TIMEM ,
1DTMPCCv ATMPCCP CSGMIN, OUTPUT, ARLXCA,
ILOOPCT, DTIMEL, DTIMEI, CSGMAX, CSGRAL,
1CSGRCL9 DRLXCA, DRLXCC9 LINECT, PAGECT,
1ARLXCCo LSPCS , ENGBAL' BALENG, NOCOPYO
1 NCSGM , NDTMPC, NARLXCv NATMPC, ITEST ,
lJTEST , KTEST , LTEST , MTEST v RTEST ,
ISTEST , TTEST , UTEST * VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDNNCNRGNNGNCONNARYLSEQDUMINUM2
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NOIM, NTH, X
EQUIVALENCE (K(1),XK(1))
DIMENSION T(1)o C(1)o Q~l)v G'l)t K~l) AMl 9XK(I)OX(Il

1, CSEQ(l) , NT(1)
NDIM z 100
NTH a 0
CALL CNFRWD
RETURN
END

F
F

I-k

co

z
tl
Ed

m0

CD01-
--.

FTN5.4A PAGE NO, I



07/13/73

PROGRAM LENGTH
ENTRY POINTS EXECTN
BLOCK NAMES

TITLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FI XCON
DIMENS
PRNT
XSPACE

EXTERNAL SYMBOLS
080QICT.
CNFRWD

00121 SYMBOLS

00017
00003

00 024
00001
000 0 1
00001
000001
00001
a 0 0 001
0000 1
00062
00012
0000 1
00003

IDENT EXECTN

5.40S EXECTN ED 0 PAGE NO. 2



SUBROUTINE VARBL1
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEUv TIMEND, CSGFAC,
1NLOOP , DTMPCA9 OPEITRP OTIMEH, DAMPA ,
1DAMPD , ATMPCA, BACKUP, TIMED v TIMEM v
1DTMPCC, ATMPCC, CSGMIN, OUTPUT, ARLXCA,
1LOOPCT9 DTIMEL, DTIME1, CSGMAX, CSGRAL,
1CSGRCL, DRLXCA, DRLXCC9 LINECT, PAGECT9
IARLXCCO LSPCS I ENGBAL9 BALENG, NOCOPY9
1NCSGM * NDTMPC, NARLXC, NATMPC, ITEST 9
1JTEST , KTEST , LTEST * MTEST v RTEST 9
ISTEST , TTEST . UTEST * VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDONNCoNRGNNGeNCONNARYLSEQDUMINUM2 z
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NOIM, NTH, X
EQUIVALENCE (K(1),XK(1))

Ib. DIMENSION T(1), C(l)v Q(1), G(1)* K(1)y AM) OXK(1) ,X(1)
1" CSEQO1) , NT(1) C
CALL STFSEP(3,,0(l))
RETURN
END CD

01

FTN5.4A 07/13/T3 PAGE NO, I



MARY E. GEALY

tu

z

C.

0
W

F-S

p-S

-j
tD

co

I-z

:o 124; Q ; _~ _ ; _ _ _~ _ 1c _ ! n "I_ ' c 4ooooo e- 
IDo o o D o ooo o o. o o oo o

oc o o oooo o o o oo o
o:,oo o oooo o ooo~oo

I
0
7LL

-J

49 0
> 0

ax

_ Id Z LA 
.J Id U 9-)-OZ U

It FwX ) Z Q: x CD -JO m ,0 U)4U L, L, '
: x ,. an7ax C7ZO,

JZL IC UOU.4 a, x

0
W.

ton
I- an1
Zd WU)

O; C
2L Z

> Ye
or U
I- 0ZJi
. CD

-J4
Z

axu

U 0.

-. kaDAn

-JV

0W( n

Cl
U)I

N

0
0

an0

U,

146



07/13/73

SUBROUTINE VARBL2
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN , DTIMEU9 TIMEND, CSGFAC9

INLOOP , DTMPCAt OPEITR9 DTIMEH, DAMPA 9
IDAMPO v ATMPCA, BACKUP, TIMED , TIMEM ,
1DTMPCC* ATMPCC, CSGMIN, OUTPUT, ARLXCA,
1LOOPCT, DTIMELf DTIME1, CSGMAX, CSGRAL,
1CSGRCL- DRLXCA9 DRLXCC, LINECT, PAGECT,
IARLXCCv LSPCS , ENGBAL9 BALENG, NOCOPY,1 NCSGM * NOTMPC, NARLXCP NATMPC, ITEST ,
1JTEST , KTEST , LTEST , MTEST * RTEST ,
1STEST , TTEST , UTEST , VTEST # LAXFAC
1, IDCNT

COMMON /DIMENS/ NNTNND*NNCNRGNNGNCONNARYLSEQODUM1 NUM2
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM, NTH, X
EQUIVALENCE (K(I),XK(l))
DIMENSION T(1), C(I)v Q(1), G(l), K(1)v AM) XK(1I)X(1)

1, CSEQ(I) , NT(1)
RETURN
END

PAGE NO. I

z

-10

01
CD

FTN5.4A



MARY E. GEALY

Eu

z
w
49
a.1

0
bJ

.-.

m~

9-
0:r

N-i
m
M(5

4

I.-z

Nm 1 Zt ---- - N N -1 fY)
_.0 N0000000C_00

00 0000 000 00000
00 0000 00000000
00 0 000 000=00000

N Id ZI) Ed U
,.i U I- OZ U _
m .J tL M 0 Q ul4UI- 0
cr f -Xmnz g z7Mx z a 

-W< 0 a U o 2ra M n O

7 .-o 40Ucr4.(AU) (
U) U)

-i~~~~~~~~J-

I 0 0

- xa.- z <
CDU) I I

m < z vl uM c ) ) >-ICx C
Ix DMZW U) U

N O0 J 0

a : z > yz 
CL Wmto 

> 090 -

in

OdI

u)

148



SUBROUTINE OUTCAL
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ a
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN * DTIMEUt TIMEND, CSGFAC9
INLOOP * DTMPCA9 OPEITRP DTIMEHM DAMPA i
IDAMPO * ATMPCAt BACKUP, TIMEO , TIMEM s
IDTMPCC9 ATMPCC9 CSGMINt OUTPUT, ARLXCA,
ILOOPCT, DrIMEL, DTIMEI, CSGMAX9 CSGRALv
lCSGRCL, DRLXCAt DRLXCC, LINECT, PAGECT*
IARLXCCo LSPCS * ENGBAL9 BALENG9 NOCOPY,
lNCSGM , NDTMPCo NARLXC9 NATMPCo ITEST *
IJTEST , KTEST * LTEST , MTEST * RTEST 9
ISTEST * TTEST * UTEST * VTEST * LAXFAC
1, IDCNT
COMMON /OIMENS/ NNT.NND.NNCNRGNNGNCONNARY.LSEQDUMI.NUM2 z
DIMENSION H(20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM, NTH, X
EQUIVALENCE (KCI),XK(C1) )
DIMENSION T(I)v Cl)s Q(1)9 Gd), K() A(l) A XK(1)OX(l) 0
1 CSEQ(I) * NT(1)
CALL TSAVE
RETURN
END C

FTN594A OT/13/T3 PAGE NO, I



5.4DS oU7CAL

IDENT OUTCAL
PROGRAM LENGTH 00014
ENTRY POINTS OUTCAL 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOJRCE 00001
COND 00001
PCS 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
080DICT.
TSAVE

00121 SYMROLS
LOAD
RUN,5,2500

I-n
CD

07/13/73 ED 0 PAGE NO. 2



PROGRAM NAMES
1 77744 LINKO
1 77327 OUTCAL
I74544 ORQERROR
1 73713 SLI.
1 72657 QlOREINT
1 70436 STFSEP
1 66263 BQENTRY

PROGRAM EXTENS.
NONE

LABELED COMMON
1 77720 TITLE
1 77675 COND
1 77603 FIXCON
1 77412 LOGIC

NUMBERED COMMON
NONE

ENTRY POINTS
0 77777 SENTRY
166263 QsQDICT.
1 77360 VARBLi
1 70540 TSAVE
1 72730 03o00040
173667 QSOINP4

I- 1 74276 REW.
1 74422 BUSY.
1 72550 QNDOUSL.
1 75033 IOH.
1 77107 .REPCNT.
1 74660 OBOERSET
I 73175 ELB.
1 72702 010031oo
1 72737 03001040
1 73005 03003040
1 73023 Q3005040
1 66427 Q0110010
1 66422 01010120
1 66404 Q1Q10230
1 66443 01010400
1 66341 03Q10140

00033
00014
0021 1
oo052
00160
00066
00056

00024
00004
ooo62
00004

1 77373 EXECTN
1 77255 BIT
1 74310 ALLOC.
1 73651 Q8INOUT4
1 72234 I0S.
1 67276 CNFRWD

1 77713 TEMP
1 77667 PCS
1 77571 DIMENS

177747
1 66542
1 70441
1 70662
1 66264
1 73713
1 73054
1 74431
1 72254
1 75007
1 77130
1 74512
1 72657
1 72706
1 72670
1 72754
1 72770
1 66427
1 6640l
166450
1 66436
166341

00017
00052
00234
00042
00423
01140

1 77355 VARBLI
1 75007 IOH.
1 74273 REW.
1 73613 STH.
1 7n657 IOP.
1 66525 INPUTT

oooo5 1 77706 CAP
00006 1 77666 KONST
00012 1 77564 PRNT

LINKO
INPUTT
STFSEP
IOP.
EXIT
SLI.
STB.
IRETURN.
105.
BCDBUF.
.TSERR.
ALLOCIN.
°1°00100
01004100
03Q01140
03003140
03005140
01010020

Q1010130
01010300
01010410
Q3010240

1 66267
1 77376
1 77346
1 72307
1 73042

1 72545
1 74446
1 74546
1 72557
1 77255
1 74544
1 73721
1 72657
1 72712
1 72776
1 73014
1 72426
1 6637S
1 66456
1 66433
1 66415
1 66341

00016
02246
00015
00036
01355
00551

00005
00001
00005

OBQENTRY
EXECTN
VARBL2
080HIST9
TSB.
ONSINGL.
ALLOC.
08QERROR
IOR.
BIT
OBERRORN
SLOs
01001100
01005100
03002040
03004040
080CHAIN
01010030
01010200
01010310
01010420
03010340

1 77343 VARBL2
1 74755 07QLODLC
1 73765 UNPAK
1 73037 l08.
1 70524 TSAVE
1 66341 QIOSTORE

1 77701 SOURCE
1 77665 ARRAY
1 77416 XSPACE

1 66341
1 67332
1 77332
1 72553
1 73617
1 73772
1 74316
1 74755
1 72234
1 76623
1 74545
1 73651
1 72676
1 72662
1 72746
1 72762
1 71701
1 66450
1 66404
1 66422
1 66415
1 66341

EXECUTION STARTED AT 1835 -54

Q3010040
CNFRWD
OUTCAL
THEND,
STH.
UNPAK
RETURN.
070LODLC
IOE.
ELD.
08NOTRAC
0800UT4
01002100
0300nl40
03002140
03004140
ETA8.
01010100
01010210
0IQ10320
OQ101430
03010440

00012
00032
00306
00554
00133
00164

00005
00001
00146

z

01
CD



MARY E. GEALY

-J_5

-J

4

4 -a-

U) 0*:

2 -*

no4 0 I
U__

o4 11 Id-J z 

* c5
152



PROGRAM NAMES
1 70655 PLOTTEMP 07122 1 41101 PLOTPREP 04102 1 40663 PLOTT 00216 1 40641 G80LOADA 00022
1 40405 ALLOC. 00234 1 40340 ENC. 00045 1 40305 DEC. 00033 1 40073 SINF 00212
1 35625 IOHe 02246 1 35536 Q8QRESID 00067 1 35504 07OLODLC 00032 1 35273 80ERROR 0o0?i
1 33716 IOP. 01355 1 33572 NUMBER 00124 1 33032 SYMBOL 00540 1 32305 AXIS 00525
1 32233 SLI. 00052 1 32175 STH. 00036 1 31421 1OB. 00554 1 31354 TSH, 0004S
1 31337 REW. 00015 1 31245 BSP. 00072 1 31212 080IFIOC 00033 1 27734 PLOT 01256
1 27553 OlQREINT 00160 1 27367 OIQSTORE 00164 1 26744 IOS. 00423 1 26666 OBOENTRY 00056

PROGRAM EXTENS.
NONE

LABELED COMMON
1 64735 TM 03720 1 55075 TP 07640 1 45235 NO o7640 1 45231 MINMAX 00004
1 45207 AXES 00022 1 45203 MISCELL 00004 1 27733 SIZ29 00001

NUMBERED COMMON
NONE

ENTRY POINTS
0 77777 SENTRY 1 76723 PLOTTEMP 1 26672 OSOENTRY 1 27263 THEND.
1 27476 0lQloloo 1 27606 Q01051o0 1 27367 03010040 1 27624 G3000040
1 26666 OBQDICT. 1 45024 PLOTPREP 1 27737 PLOTS 1 40675 PLOTT z
1 30657 PLOT 1 30135 STOPPLOT 1 31221 BQOIFEOF 1 31250 8SP 
1 31342 REW. 1 31360 TSH. 1 31424 TS8. 1 32201 STH. - r
1 32241 SLO. 1 32233 SLl 1 27255 ONSINL. 1 31436 ST8.

1 32316 AXIS 1 33035 SYMBOL 1 33575 NUMBER 1 33721 IOP. t
cn 1 27017 OGOHIST. 1 35275 0OBERROR 1 35504 07OLODLC 1 35542 080RESID 0
Co 1 26744 IOE. 1 27136 OBOCHAIN 1 26764 105. I2T267 IOR,

1 35651 IOH. 1 37746 *TSERR. 1 35625 BCDBUF. 1 27260 ONDOUBL.

1 27602 01O04100 1 40125 SINF 1 40102 COSF I 40310 DEC. C
1 40343 ENC. 1 37441 ELD. 1 40543 ALLOC. 1 40413 RETURN. 
1 40517 BUSY* 1 40526 IRETURN. 1 26667 EXIT 1 40641 OBOLOADA
1 40662 OBOLOCON 1 40657 OBOLODA 1 40607 ALLOCIN. 1 40076 OSGCOSEi
1 40121 OBOSINF 1 37725 sREPCNT. 1 35273 OBERRORN 1 35274 GSNOTRAC
1 35407 OsQERSET 1 34740 ETAB. 1 31557 ELs, 1 31215 osoIrIOC
1 30436 SPACE0 0 1 27553 Gl~ooloo 1 27553 010011oO 1 27572 0Q102100
1 27576 Q1003100 1 27556 03000140 1 27633 03001040 1 27564 03001140
1 27672 03002040 1 27642 03Q02140 1 27701 030o3040 1 27650 03003140
1 27710 03004040 1 27656 03004140 1 27717 Q3005040 1 27664 03005140
1 27455 01010010 1 27455 01010020 1 27423 01010030 1 27450 01010120
1 27427 01010130 1 27504 0IQ10200 1 27432 01010210 1 27432 01010230

1 27476 Q1Q10300 1 27461 01010310 1 27450 01010320 1 27471 °1G10400
1 27464 0Q110410 1 27443 01010420 1 27443 G110430 1 27367 03010140
1 27367 03Q01240 1 27367 03010340 1 27367 03010440

EXECUTION STARTED AT 1836 -06



MARY E GEALY

Eu
Cf
Co

Co
Eu

WE

Co
Co

Co

*o

Ean

I-

-J

En

X

To

O D
C Ed

4 * I-

0 S (5

. J i

<xx 

154



NRL REPORT 7656

U

U

D

on

C,.

U)

.- 

CDI

0 M

a

K

0 "

CD

o "

2 a-

U_ C
U3 C

C_ -

O- U
no *C

a zI
U t UD

- 0J

.4 

O -I

155



5SS MARY E. GEALY

:E 5 S711

uii(nxxx

xixxill5 5 S
S 5 5

5 5x

71
xxCS 5 S
5 S 5
xxxx 5 5

5 5 5

5 5 5
m 5 5
S S 5
x x
lx N

x x
Ix x

In I x x

ux x
In iii: 

54 5 5

a 515

S4 5 5
5 5 5

15 5
U1 5 i 711 5S

x x

O _ 5 S

Ci 51S 

w_ t xu

'I. XI .
.1 1

z 5 x

o: Z5 

0117

1 5S

N' 5 SJ

1 5 5 'E
In il5l5K J 5l5

^0 5 x 50

1 5 m

ill
I 177W

- x z x

In I 11x15

Z051s7
411 In£ 

541 4 

Sdl 5 

M11 51 S
wil In5 

5'515 -
s1 I 11 S -

O ii1
11551p-il 0 411 sLi&
117sS 017 5 0 

Wsl s 
a-Ill a-

4S1 2 2 
21E -

.411S1sa:
111 0-5v

O: i 151
I.s1S1SIn
a-Ill E i

Z1 2 
_~l s s 4
s.11 .S .J
a-IllS 

.41 S : LU

_31 I 

Z E £ S

01 I £1 z

W~l i I-i: 156



NRL REPORT 7656

L~~~~~~~~~~~~~~~~ \ a 

U-1~~ -- SWn1<

C D

2_ _S

i~~~~~~~~~~~~~~~~~~~~~~~~~~

_-j

CZ X q

o~~~~~~~~~~~~c .1 MI -M A

wa: w'SE. R1-85 al'S~ve al-X6- W~si1 %sel w\'9 w-h9 w-E tX1 3 u0

a:

U~~~~~~~~~~~~~~~~~~~~~~) ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~4

a: 0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

(~~~~~~~~~~~~~~~~~~~~~~~~~~j ~~~~~~~~~~~~~~~~~~~~~~~~Cd

ci: E~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-4

CD p-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~u~~~~~~~~~~~~~~~~~~~~~~~~~~~~
83

J ' dwI3

157

W p., x. x,. QU ,.Q W .] Le U



CINDR SMPLE PROBLEM IR NODE

2

e 6.a 60.

TIME - MIN

(c)

CINDR SRMPLE PROBLEM IR NODE

3

txil

r-

.Ce 2.59) 3.50 .e 1s0 9.50 e .e0

TIME - MIN
7.50 e5 9.510 5L.Xw

(d)

Fig. A2 (Cont'd)-Time vs temperature profiles for CINDA Sample Problem 1A. Plots are shown in the order in which they are plotted.
Time and temperature numbers will be in the E format, rather than in the F format as shown.

I-1

01

w

M,

7.1'M 51z g .0 I 9a. CM1



CINDR SRMPLE PPOBLEM IR NODE

4

8~~~~~~~~~~~~~~~~~~

a~~~~~~~~~~~~~~~~~~

F3

/8 Z3~~~~~~~~~~~~~~~~~~

(e)

Fig. A2 (Cont'd)-Time vs temperature profiles for CINDA Sample
Problem 1A. Plots are shown in the order in which they are plotted.
Time and temperature numbers will be in the E format, rather than
in the F format as shown.





Appendix B

SAMPLE PROBLEM 1B

ORIGINAL RUN

Sample problem 1A was linear and can be rigorously solved by means of the Laplace
transform. However, the introduction of nonlinearities makes rigorous solutions virtually
impossible and makes the use of finite difference techniques mandatory. To demonstrate,
apply the following nonlinearities to sample problem 1A and obtain the solution.

1. Both ends of the bar are uninsulated and allowed to radiate to absolute zero.
The Stephan-Boltzmann constant is a = 1.991E-13 Btu/min-in. 2 Ro4 , and the emissivity
varies linearly with temperature as follows:

e = 0.4 at -100 0 F
e = 0.8 at 3000F.

2. The thermal conductivity of the bar varies with temperature as follows:

k = 0.15 at -100 0 F (Btu/in.-min-0 F)
k = 0.25 at 1000F
k = 0.40 at 2000F
k = 0.60 at 3000F.

3. The density remains unchanged but the specific heat varies with temperature
as follows:

Cp = 0.3 at -100 0 F (Btu/lb-0F)
= 0.39 at 1000 F
= 0.49 at 2000 F
= 0.65 at 300 0F.

4. The heating rate is a function of time as follows:

q = 3.0 at 0 min (Btu/min)
q = 4.0 at 3 min
q = 4.0 at 7 min
q = 3.0 at 10 min.

In addition, obtain the rate of heat loss and the integral of the radiation transfer
from the unheated end of the bar. The network representation of this problem (shown
in Fig. Bi) differs only slightly from problem 1A. Now however, the capacitances are a
function of temperature. We therefore require multiplying factors such that

161



MARY E. GEALY

q,

T T T T T

Fig. Bi-Network of a nonlinear bar

C = pVCp(T),MF=pV
MF = 0.1 for capacitors 2, 3, and 4
MF = 0.05 for capacitors 1 and 5.

The conductors are now

G = k(Tm)Ac/Q, MF = Ac/9, where Tm is the mean of the
end T's.

MF = 1.0 for conductors 1, 2, 3, and 4.

A radiation conductor requires the input value aeFA; however, FA = 1.0, hence

Grad = ae(T)
MF = 1.991 Btu/min0 F.

Also,

q = q(T).

The capacitors and conductors will be specified with CGS and CGD calls.

A. Original Run

Since this is not a RECALL problem, the first card of the problem data deck will
be blank. The rest of the deck may be constructed as follows:

162



NRL REPORT 7656

8 12

BCD 3THERMAL SPCS
BCD 9SAMPLE PROBLEM IB
END
BCD 3NODE DATA
CGS 1,80.,,A3,.05,2,80.,A3,.j1,3,80.,A3,.1
CGS 4,80.,A3,.1,5,80.,A3,.05

-10,-460. ,O
END
BCD 3CONDUCTOR DATA
CGS 1,1,2,A2,1.,2,2,3,A2,1.,3,3,4,A2,1.,4,4,5,A2,1.
CGS -11,1 ,I0,AI ,-1 .991E-13,-12,5, 1O,AI ,-1 .991E-13
END
BCD 3CONSTANTS DATA

TIMEND,10.,OUTPUT,.5,CSGFAC,2.,4,0,5,0,6,STORI,7,STOR2
BCD 3ARRAY DATA

1,-100.,.4,300.,0.8,END $ EPSILON VS T
2,-100.,.15,100.,.25,200.,.4,300.,.6,END $ K VS r
3,-100.,.3,.100.,.39,200.,.49,300.,.65,END $ CP VS T
4,0.,3.,3.,4.,7.,4.,10.,3.,END $ 0 VS TIME
-5,QRATEQTOTAL,END $A LABEL ARRAY

END
F DIMENSION X( 100)

BCD 3EXECUTION
F NDIM = 100
F NTH =0

STOREP (K6)
CNFRWD

F IDCNT =IDCNT + I
STUREP(K7)

END
BCD 3VARIABLES I

DIDEGI(TIMEMA4,01) $APPLY HEATING RATE
END
BCD 3VARIABLES 2

RDTNQS(TIOT5,G12,K4) $OBTAIN HEAT FLOW RATE
QINTEG(K4,DTIMEU,K5) $INTEGRATE SAME

END
BCD 30UUrPUT CALLS

TPRINT
PRINTL (A5 ,K4,K5)

END
BCD 3END OF DATA

163



MARY E. GEALY

This problem will be stored twice on tape 22. The original data will be stored under
the I.D. name, ST0R1, and the number, 0 (IDCNT). The final values will be identified
as ST0R2, 1 because IDCNT was incremented. (It actually would not have been neces-
sary to use IDCNT in this case, since neither call to ST0REP was in a loop. The second
call could have been uniquely identified as ST0R2,0.) The binary constructed subrou-
tines (processor) will be stored on tape 40. See Section VII for the proper deck setup
and job request form.

The above problem data deck processed by the CDC-3800 version of CINDA pro-
duces output given in the following pages (original run).

164



SEQUENCE 04645 STARTED PRINTING 07/30/73 AT 191547 ON LPO1
DRUM SCOPE 2.1 COMPUTER TWO. MAX. DEMAND IS 570008 VERSION 004 10/31/72
SEQUENCE NUMBER 004645 STARTED AT TIME 191209 DATED 07/30/73
JOB(5) 408008009899RCC,10
EQUIP.09z(CINDA MASTERollq999)9ROqHIDA
EQUIP,22z**vwOsHlDA
EQUIP,40=**,RWHI ,DA
***BINARY DECK***
BANK, (0) ,/4/
LOAD, 09
RUN,1,1000

O~~~~~~~~~~~~~~~~~~~~~~~~~~
01 F3

cD01



PROGRAM NAMES
1 77672 SEARCH 00105 1 77603 STFFB 00067 1 76026 GENLNK 00540 1 74614 SPLIT 01026
1 74272 SKIP 00322 1 72717 CODERD 01353 1 71712 PSUEDO 00661 1 71627 ORMIN 00o63

1 71417 PACK43 00210 1 71345 BIT 00052 1 71051 PRESUB 00274 1 70731 WRTBLK 00120

1 70673 WRTSCOPE 00036 1 65267 CINDA4 o3404 1 62747 BLKCRO 01170 0 71134 OATARD 06643
1 62141 PREPRO 00605 0 60445 INITAL 10467 1 57571 FINAL 02350 1 57335 ALLOC. 00234
o 56177 IOH. 02246 1 5T303 QTQLOOLC 00032 0 54622 IOP. 01355 1 57072 QBQERROR 00211

1 57005 BFI. 00065 1 56740 ENC. 00045 1 56705 DEC. 00033 0 54570 08QIFUNI 00032
o 54544 EFT. 00024 0 54472 SLI. 00052 0 54430 Q8INOUT4 00042 o 53654 IOB. 00554
o 53562 BSP. 00072 0 53527 Q8QIFIOC 00033 0 53471 STH. 00036 0 53424 TSH, 00045
0 53407 REw, 00015 o 52764 IOS. 00423 0 52604 QjQREINT 00160 0 52420 Q1OSTORE 00164
o 52342 QBQENTRY 00056

PROGRAM EXTENS-
NONE

LABELED COMMON
1 76566 CRDBLK 01015 1 76014 TAPE 00012 1 75775 DATA 00017 1 75657 SUBLST 00116
1 75654 QLOGIC 00003 1 75642 PLOGIC 000l2 1 72573 LOGIC 00124 1 64613 NARRAY 00454
1 64137 DIMARY 00454 1 62746 WJS 00001

NUMBERED COMMON

0 25555 4 17500 1 00001 1 17500 1 17501 3 175oo 1 37201 2 17500

ENTRY POINTS
0 77777 SENTRY 1 77675 SEARCH 0 52342 QGQDICT. 1 77607 STFFB
1 76214 GENLNK 0 52420 Q3Q10040 0 52655 Q3Qo0040 0 53303 THEND.
1 63176 BLKCRo 0 53412 REW. 0 53430 TSH. 0 53475 STH.
0 53275 QNSINGL. 1 74656 SPLIT 1 74275 SKIP 0 53536 QAQIFEOF
o 53565 BSP. 0 53657 TSB. 0 53671 ST8. 0 54446 Q8QINP4 W
1 73077 CODERO 0 72636 DATARD 0 5500 sLo. 0 54472 SLI.>

1 71760 PSUEDO 1 71422 PACK43 1 71632 ORMIN 0 54547 EFT.
1 71345 BIT 1 71110 PRESUB 1 66371 CINDA4 1 7070l WRTSCOPE
0 54573 QSQIFUNI 1 70764 WRTBLK 1 56710 DEC. 1 56743 ENC,

1 57020 BFO, 1 62214 PREPRO 0 52346 QsQENTRY 0 67407 INITAL
1 60643 FINAL 1 57074 QSQERROR 0 52343 EXIT 0 54430 Q8QOUT4
0 54625 IOP 0 53037 Q0QHIST. 1 57303 QTQLODLC 0 53004 IOS.

0 53307 IOR. 0 56223 IOHM 060320 *tSERR. 0 56177 BCDBUF.
0 52764 IOE. 53156 Q8QCHAIN 0 53300 ONDOUBL. 0 55644 ETAS*

1 57473 ALLOC. 1 57343 RETURN. 1 57447 BUSY. 1 57456 IRETURS.
157537 ALLOCIN. 0 60013 ELD. o60277 9REPCNT. 1 57072 Q8EREORN
1 57073 QsNOTRAC 1 57206 QBQERSET 1 57010 8FI. 0 54012 ELs.
0 53532 Q8QIFIOC 0 52604 GQ1ooloo 0 52604 QiQolico 0 52623 Q1QO2100
0 52627 Q1QO3100 0 52633 Q1Q04100 0 52637 01O05100 0 s2607 03000140
0 52664 Q3QD1o4o 0 52615 03001140 0 52723 030o2040 0 52673 G3002140

0 52732 03Q03040 0 52701 03003140 0 52741 03004040 0 52707 03004140
o 52750 Q3Q0 5040 0 52715 03005140 0 52506 01010010 o 52506 Q1Ql002o
0 52454 Q1Q10030 0 52527 QlG10100 0 52501 01010120 o 52460 Ql010130
0 52535 Q1Q10200 0 52463 0Q110210 0 52463 01010230 o 52527 QlQlo300
o 52512 Q1Q10310 0 52501 01010320 0 52522 010lo4oo 0 52515 Q1010410

0 52474 Q0Q10420 0 52474 QlQl0430 0 5242o 03013 140 0 52420 03Q10240
0 52420 Q3Q10340 0 52420 03Q10440

EXECUTION STARTED AT 1915 -43



3THERMAL SPCS
9SAMPLE PROBLEM 18

3NODE DATA
1,80 .A3s. 05,2 8SO. A3,.1380*9. , A3, .1
4,80.,A3,.1,5,80.,A3,.05
-10,-460.,0

RELATIVE NODE NUMBE S ACTUAL NODE NUMBERS

1 THRU 6 1 2 3
3CONDUCTOR DATA
1 *192A291,*292 3vA2v1.*3v3,4tA291 ,4,4q5vA2,1.
-11,11lOAlIl.99lE-l3,-l 2,5,alOAlil.991E-1J

RELATIVE CONDUCTOR NUMBERS

4

AC1

1 THRU 6 1 2 3 4
3CONSTANTS DATA
TIMEND,1o.,OUTPUT,.5,CSGFAC,2 ,4,0,5,0,6,STOR17.STOR2

3ARRAY DATA
1,-100o..4,300.,0.s,END SEPSILON VS T2 ,-lo0.ol5,l1O.,.25, 2 00o.,4, 3 oo.,.6,END SK VS T
3,-100., .3,100..39,200.,.49,300. .65,END SCP VS T
4,0.,3.,3,,4.,7.,4.,10*,3.,END SQ VS TIME
-5,QRATE,oTOTALEND SA LABEL ARRAY

END
DIMENSION K( 100)

BCD 3EXECUTION
NDIM ' 100
NTH ' 0

STOREPIK6)
CNFRWD

IDCNT * IDCNT *
STOREP I K7)

END
BCD 3VARIABLES 1

VARCSMCT 1'C
VARCSM(T @C* C
VARCSM(T 3*C 3,
VARCSM(T 4,C 4,
VARCSM(T SC 5,
VARGSM(G 1,T 1,
VARGSM(G 2*T 2.
VARGSMIG 3,T 3,
VARGSM(G 4*T 49
VARGSMIG 11,T 1.
VARGSM(G 12,T 5,

ENDVI
DIDEGI (TIMEMPA4,Q1)

END
BCD 3VARIABLES 2

RDTNQS(TIotTSG12,K4)
QINTEGCK49DTIMEUtKS)

END
BCD 3OUTPUT CALLS

.T~n,..

F

F
F

pp

A3: 015)
A3 *. 1)
A3,.l)
A3,v1)
A3, .05)
T 2,A2,1.)
T 39A291s)
,T 4,A21.)
,T 5A29 1I )
T lOAl-l1.991E-13)
T 10*Alt-1*991E-13)

SAPPLY HEATING RATE

SOBTAIN HEAT FLOW RATE
SINTEGRATE SAME

BCD
BCD
END
BCD
CGS
CGS

END

BCD
CGS
CGS
END

BCO

END
BCD

5 10

'UAL CONDUCTOR NUMBERS

11 12

z

01

Co
-3

cn
om



MARY E. GEALY

an

z

cr

CL

CD

Ed

us U

z

_

U)

y-~~~ D:
0

cc

IC ~~~~~CD

L; ~ ~ it

z ~~

a~~~ac.

-
U

; a°~~a'

a ~~ iZ

w

o b.(1

ZZ

an_z ox In oE
-~~~

U,

L~~~

4, (

a,~ ~ ~~~~6



NRL REPORT 7656

0
z Q

2 0
. .
", e
U U

0r -

m z
..JIU

169



07/30/73

PROGRAM LINKO
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN, DTIMEU, TIMEND, CSGFAC,

INLOOP , DTMPCA9 OPEITRv OTIMEH9 DAMPA 9
IDAMPD * ATMPCA, BACKUP9 TIMED , TIMEM 9
lDTMPCCv ATMPCCt CSGMIN, OUTPUT, ARLXCA9
1LOOPCT, DTIMEL, DTIME1. CSGMAX* CSGRAL,
1CSGRCLo DRLXCA, DRLXCCo LINECT, PAGECT,
1ARLXCC, LSPCS * ENGBAL, BALENG, NOCOPY#
INCSGM , NDTMPC9 NARLXC, NATMPC, ITEST 9
lJTEST . KTEST . LTEST * MTEST * RTEST .
JSTEST , TTEST * UTEST * VTEST t LAXFAC
1. IDCNT

COMMON /DIMENS/ NNTNNDNNCNRGNNGNCONNARYLSEQDUMIPNUM2
DIMENSION H(2O)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM, NTH. X
COMMON /LOGIC/ LNODE9 LCOND, LCONSTs LARRAY
LOGICAL LNODE, LCOND9 LCONST, LARRAY
OIMENSION T( 6),C( 6)vQ( 5)qG( 6)oK( 4)oA(

lCSEQ( 6)oX( lOU), NT 6)
LNODE a TRJE.
LCONO a *TRUE.
LCONST v*TRUE.
LARRAY * *TRUE.
CALL INPUTT
CALL EXECTN
GO TO 1
END

PAGE NO. 1

34) ,

FTN5.4A

I-k

--

I

Q



ED 0 PAGE NO. 2

PROGRAM LENGTH
ENTRY POINTS LINKO
BLOCK NAMES

TI TLE
TEMP
CAP
SOURCE
COND
PCS
KONST
ARRAY
FIXCON
DIMENS
PRNT
XSPACE
LOGIC

EXTERNAL SYMBOLS
QBQENTRY
03010040
080DICT.
INPUTT
EXECTN

00126 SYMBOLS

00033
00003

00024
00006
00006
00005
0 0006
00006
00004
00042
00062
00012
00006
00146
00004

IDENT LINKO

I-k

I-k
011
CD

5*40S LINKo 07/30/73



PAGE NO, 1

SUBROUTINE EXECTN
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ . C
COMMON /SOURCE/ 0
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN 9 DTIMEU, TIMEND, C'SGF ACv

INLOOP * DTMPCAP OPEITR. OTIMEH, DAMPA 0
1DAMPD * ATMPCA, BACKUP, TIMED I TIMEM 9
lDTMPCC. ATMPCC, CSGMIN, OUTPUT, ARLXCA,
ILOOPCT, DTIMEL, OTIME19 CSGMAX, CSGRAL9
lCSGRCLo DRLXCA9 DRLXCCs LINECT, PAGECT,
lARLXCCo LSPCS , ENGBAL9 BALENG, NOCOPY,
lNCSGM * NDTMPC9 NARLXCO NATMPC, ITEST ,
1JTEST * KTEST * LTEST * MTEST * RTEST,
ISTEST * TTEST * UTEST , VTEST , LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDNNCNRGNNGNCONNARYLSEQDUMItNUM2
DIMENSION H(2O)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM, NTH, X
EQUIVALENCE IKI1)IXKI 1 ))
DIMENSION T(I)t C(Ii) Q(1s) G(1)v K(1)9 AMl) sXK(l)X0l)

bo 1, CSEQ(1 ) , NT(l)
NDIM = 100
NTH * 0
CALL STOREP(K(3))
CALL CNFRWD
IDCNT a IDCNT * 1
CALL STOREP(K( 4 ))
RETURN
END

F
F

F

Q
Etl

D"
P-C

FTN5.4A 07/30/73



IDENT EXECTN
PROGRAM LENGTH 00027
ENTRY POINTS EXECTN 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOURCE 00001
COND 00001
PCS 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
QBQDICT.
STOREP
CNFRwD

00122 SYMBOLS Z

co l_ O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:
3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~C

ED 0 PAGE NO* 25*4DS EXECTN 07/30/73



MARY E. GEALY

0
EdZ

0.~~~~~~~ 

\ s ~ ~ ~~n *x

O~~~~~~~~~~ M.- -a - .- I.- . a- UC. Z -

4.4-a>-oZ a x -a.- 0.Ed)~~~~~~~((5DO~ _l.-WI 0-

. oI z< <'- I.- Ed
O In

C . _

_~~~~

Uj .< x I.

I oX C) OU Z _4_

2Ed02 ZdU . .Z ,,

*0-U (Z~ Z cZ 0'0'

Ed (5 - S0 z J *.4 -4 W L __
a 2Z'- Z . . -. . -... .... .

_jxf._uvoujlz _ _ _ _ _ , .

at ~ _ _1 _ .X -J. $.-W Q2!

ui~ ~ . _, Z) _ _ LI)__ 

O *- Z - -Z . - .- .Z -D u 

)- '_-E OO z .. '.. . Z -_a .... X......... )(Cs ia n <-

Za(E U az- I...- _ M Ut U le UU.,O -

. . . 4)-)- . ..-. -. . .N

:)Zz zzzz z u.- - U 1. 0 Z.- .< 4444--))-- Z
oo o oo co .0U uL2-. 0 zoo -- …N

Ed Z -_ - N-. U NI _U0

-4 - -4k-vx-----

~~ a -…9 a ; .> CUOXU QOUUUU9-9-> )-) 

Z 0 4 O a44W Z a gZ… nI X a X E_ _Z … - - - --- i

Mr Z Z M Z ZF M M-f Z ZS 0Z Z 0 (D-_U x x n -i -- i -i -i -i -i -i -i - -i--

a4)UOD~ UUUWU\\Zn0t.v -- V) Ed FlC~e(CO

DO O O OO - I- 0 M O \ 0 P. b.) W0 0 -a < .t -C -1 .- X I 9 < < < w Z-

(5uuuO U ZuuIoa40.-EdW X U O ' Z .

4 E '.'..Z)-)-)-)-(5oflo9-)- InN < ) )-)-)-)-CaC*OCD *c-

Z z zz) z z 22n Z

9-~ ~ ~ _4 _4 _(- _ 

U.

174



ED 0 PAGE NO, 2

PROGRAM LENGTH
ENTRY POINTS VARBL1
BLOCK NAMES

TITLE
TEMP
CAP
SOURCE
COND
Pcs
KONST
ARRAY
FIXCON
DI MENS
PRNT
XSPACE

EXTERNAL SYMBOLS
080DICT.
VARCSM
VARGSM
DlDEGI

00124 SYMBOLS

00110
00003

00024
00001
00001
00001
00001
00001
00001
00001
00062
00012
00001
00003

IDENT VARBLI

z

-It
01
CD

5.4DS VARaLi 07,30,73



PAGE NO. 1

SUBROUTINE VARBL2
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN, OTIMEU, TIMENO, CSGFAC,

1NLOOP * DTMPCAv OPEITR, DTIMEH, DAMPA 0
1DAMPD I ATMPCA# BACKUP, TIMED * TIMEM t
lOTMPCCq ATMPCC, CSGMIN, OUTPUT, ARLXCA9
ILOOPCT, DTIMEL, DTIMEI9 CSGMAX, CSGRAL,
ICSGRCL, DRLXCA, DRLXCC, LINECT. PAGECT,
lARLXCC9 LSPCS * ENGBAL9 BALENG9 NOCOPY9
lNCSGM * NDTMPC9 NARLXC, NATMPC, ITEST,
lJTEST * KTEST . LTEST , MTEST . RTEST,
ISTEST , TTEST , UTEST , VTEST . LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDNNCNRGNNGNCONNARYLSEQIDUMI*NUM 2

DIMENSION Hi 2 0 )
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM9 NTH, X
EQUIVALENCE iK1),XKil))
DIMENSION Til), C(ll) Gil) Gl), KiI)o AMll XK()9X(l)

0) 1, CSEQl) I NT(l)
CALL RDTNQS(T(6)9T(5),Gi6)vKtl))
CALL QINTEG(Kil)ODTlMEU9KiZ.))
RETURN
END

FTN5.4A 07/30/73



IDENT VARBL2
PROGRAM LENGTH 00022
ENTRY POINTS VARBL2 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOURCE 00001
COND 00001
PCs 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
Q8QDICT.
RDTNQS 

QINTEG
00122 SYMBOLS Z

C

-a

5.4DS VARBL2 ED 0 PAGE NO. 207/30,73



SUBROUTINE OUTCAL
COMMON /TITLE/ H
COMMON /TEMP/ T
COMMON /CAP/ C
COMMON /SOURCE/ Q
COMMON /COND/ G
COMMON /PCS/ CSEQ
COMMON /KONST/ K
COMMON /ARRAY/ A
COMMON /FIXCON/ TIMEN DTIMEU, TIMEND, CSGFAC,

1NLOOP ' DTMPCA* OPEITR, DTIMEH* DAMPA 9
IDAMPD ATMPCA, BACKUP. TIMED , TIMEM 0
IDTMPCC* ATMPCC, CSGMINP OUTPUT, ARLXCA9
ILOOPCT, DTIMEL, DTIMEI1 CSGMAX, CSGRAL9
ICSGRCLP DRLXCA, DRLXCCv LINECT, PAGECT,
IARLXCCo LSPCS * ENGBAL, BALENG, NOCOPY,
1NCSGM o NDTMPCP NARLXC, NATMPC, ITEST ,
1JTEST t KTEST * LTEST * MTEST * RTEST,
ISTEST * TTEST * UTEST , VTEST 9 LAXFAC
1, IDCNT
COMMON /DIMENS/ NNTNNDONNC.NRGNNGNCONNARYLSEQDUM1,NUM2
DIMENSION Hi20)
COMMON /PRNT/ NT
COMMON /XSPACE/ NDIM. NTH, X
EQUIVALENCE (K(l),XK(l))
DIMENSION T(l) C(i), Qil.) G(1i) K(ilt All) ,XK(I)oXil)

1. CSEQ(1) * NT(l)
CALL TPRINT
CALL PRINTL(A(33),Kl)vK(2i))
RETURN
END

FTN5.4A PAGE NO. 107/30/73



5,4DS OUTCAL t7/30/73 ED 0 PAGE NO, 2

IDENT OUTCAL
PROGRAM LENGTH 00020
ENTRY POINTS OUTCAL 00003
BLOCK NAMES

TITLE 00024
TEMP 00001
CAP 00001
SOURCE 00001
COND 00001
PCs 00001
KONST 00001
ARRAY 00001
FIXCON 00062
DIMENS 00012
PRNT 00001
XSPACE 00003

EXTERNAL SYMBOLS
Q80DICT,
TPRINT
PRINTL Z

00122 SYMBOLS
LOAD.40
RUN,5,2500

01

CIA



PROGRAM NAMES
1 77744 LINKO 00033 1 77312 EXECTN 00027 1 77202 VARBLI 00110 1 77160 VARBL2 00022
1 77140 OUTCAL 00020 1 77103 SKPLIN 00035 1 77061 Q80LOADA 00022 1 76601 LAGRAN 00260
1 76527 BIT 00052 1 74261 IOH. 02246 1 74227 Q7QLOOLC 00032 1 74016 08QERROR 00211
1 73562 ALLOC. 00234 1 73365 WRTLoB 00175 1 73244 STNDRD 00121 1 73156 TOPLIN 00066
1 73131 Q8QXMODF 00025 1 73043 DlDl M 00066 1 72535 UNPAK 00306 1 72520 REM. 00015
1 72446 SLI. 00052 1 72404 QBINOUT4 00042 1 72346 STH. 00036 1 71572 10. 00554
1 71412 Q1QREINT 00160 1 70767 IOS. 00423 1 67412 IOP. 01355 1 67176 PRINT 00214
1 67021 TPRINT 00155 1 66741 QINTEG 00060 1 66643 RDTNQS 00076 1 66415 DIDEGi 00226
1 66277 VARGSM 00116 1 66221 VARCSM 00056 1 65061 CNFRWD 01140 1 63373 STOREP 01466
1 62622 INPUTT 00551 1 62436 Q1QSTORE 00164 1 62360 OUGENTRY 00056

PROGRAM EXTENS.
NONE

LABELED COMMON
1 77720 TITLE 00024 1 77712 TEMP oo006 1 77704 CAP 00006 1 77677 SOURCE 00005
1 77671 COND 00006 1 77663 PCS 00006 1 77657 KONST 00004 1 77615 ARRAY 00042
1 77533 FIXCON 00062 1 77521 DIMENS 00012 1 77513 PRNT 00006 1 77345 XSPACE 00146
1 77341 LOGIC 00004

NUMBERED COMMON
NONE

ENTRY POINTS
o 77777 SENTRY I 77747 LINKO 1 62364 08OENTRY 1 62436 03010040
162360 080DICT. 1 62637 INPUTT 1 77315 EXECTN 1 64216 STOREP
1 65115 CNFRWD 1 77205 VARBLI 1 66224 VARCSM 1 66302 VARGSM

g 1 66431 DiDEGI I 77163 VARBL2 1 66646 RDTNQS 1 66744 QINTEG
1 77143 OUTCAL 1 67042 TPRINT 1 67315 PRINTL 1 67415 IOP.
1 71042 Q8QHIST. I 71306 THVND. 1 71463 GJ000040 1 62361 EXIT
1 71575 TSB. 1 72352 STH. 1 72422 Q0QINP4 1 72446 SLI.
1 71300 QNSINGLe 1 72523 REW. 1 71607 STB. 1 72404 Q8QOUT4
1 72454 SLO. 1 72542 UNPAK 1 73046 D1DIWM 1 73140 XMODF
1 73215 TOPLIN 1 73325 STNDRD 173411 WRTLO8 1 73720 ALLOC.
1 73570 RETURN. I 73674 BUSY. 1 73703 IRETURN. 1 74020 08QERRDR
1 74227 07QLODLC I 71303 QNOOUBL- 1 71007 IOS. 1 71312 IOR.
1 70767 IOE. 1 74305 IoH. I 74261 8CDBUF. I 76527 SIT
1 76614 LAGRAN 1 77061 Q8QLOADA 1 77112 SKPLIN I 77102 08OLDCON
1 77077 Q8QLODA 1 76075 ELD. 1 76361 ,REPCNT. I 76402 .TSERR.
1 74016 Q8ERRORN 1 74017 Q8NOTRAC 1 74132 QaQERSET 1 73764 ALLOCINo
1 73134 08QXMODF 1 71730 ELB. 1 71412 QlQOO100 1 71412 QlQOllOO
1 71431 Q1oO2100 1 71435 Q1003100 1 71441 01004100 1 71445 O1Q05100
1 71415 Q3Q00140 1 71472 Q3Q01040 1 71423 Q3Q01140 1 71531 03002040
1 71501 Q3Q02140 1 71540 Q3Q03040 1 71507 03003140 1 71547 Q3Q04040
1 71515 Q3Q04140 1 71556 Q3Q05040 1 71523 03005140 1 71161 080CHAIN
1 70434 ETAB. 1 67306 PRINT 1 62524 °1010010 1 62524 Q0lOOOZO
1 62472 QlQ1003O 1 62545 OQ101100 1 62517 011IO120 1 62476 01010130
1 62553 QQ101200 1 62501 11Q0210 1 62501 01010230 1 62545 01010300
1 62530 QlQ10310 1 62517 QIQ10320 1 62540 01010400 1 62533 01010410
1 62512 01010420 1 62512 OIQ10430 1 62436 03010140 1 62436 03010240
1 62436 Q3Q10340 1 62436 Q3Q10440

EXECUTION STARTED AT 1919 -55



NRL REPORT 7656

-j

z

0ua-

-J
LIn

181



CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - C00045

SAMPLE PROBLEM 18

TIME 00.00000*000 DTIMEU 00.00000+000 CSGMINi

T 1 80.00000+000 T 2- 80.00000+000 T

ORATE 00.00000+000 OTOTAL 00.00000+000

* * * *
TIME 50.00000-002 DTIMEU 25.27368-003 CSGMIN(

T 1' 10.50446.001 T 2- 94.49641+000 T

ORATE 10.05630-003 OTOTAL 49.40046-004

* * * *
TIME 10.00000-001 DTIMEU 29.28453-003 CSGMINi

T 1' 11.67556.00l T 28 10.59682.001 T

PAGE 1
(NRL EOITED)

1) 79.36899-003 DTMPCCt 1) 00.00000.000 ARLXCCi 0) 00.00000+000

3. 80.00000.000 T 4z 80.00000+000 T 5. 80.00000.000 T 10u-46.00000+001

2) 78.26181-003 DTMPCCi 1) 68.11626-002 ARLXCCi 0) 00.00000.000

3. 87.61895+000 T 4- 83.87774.000 T 5- 82.68624+000 T lOw-46.00000#001

2) 76.30274-003 DTMPCCi 1) 64.18434-002 ARLXCCi 0) 00.00000+000

38 97.99293+000 T 4- 93.2o244+000 T 5- 91.58636o000 T 10J-46.00000.o01

ORATE 10*89220-003 QTOTAL 10.17759-003

* * * *
TIME 15.00000-001 DTIMEU 17.76855-003 CSGMINi

T 1 12.75381+001 T 2. 11.68016+001 T

2) 73.72196-003 DTMPCC( 4) 38.60775-002 ARLXCCi 0)

3- 10.87716+001 T 4- 10.37800+001 T 5= 10.20570+001

00.00000.000

T lOi-46.00000+001

ORATE 11.95506-003 QTOTAL 15.89831-003

TIME 20.00000-001 DTIMEU 25.13348-003 CSGMIN(

T 1 13.83390.001 T 2= 12.76921+001 T

ORATE 13.15377-003 OTOTAL 22,18786-003

* * * *
TIME 25.00000-001 DTIMEU 31.77283-003 CSGMIN(

T 1' 14.93133o001 T 2= 13.87631*001 T

2) 71.49668-003 DTMPCC( 5) 56.04585-002 ARLXCCi 0) 00.00000*000

3= 11.97355.001 T 43 11.47887.001 T 5- 11.30795.001 T 102-46.00000+001

2) 69.46924-003 DTMPCCi 5) 72.10139-002 ARLXCCi 0) 00.00000.000

3- 13.09002.001 T 40 12.60208+001 T 5S 12.43351+001 T 10J-46.00000.o01

ORATE 14.47555-003 OTOTAL 29*11089-003

z
t-l

01
Cd



CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - C00045

SAMPLE PROBLEM 18

iNRL EDITED)
PAGE 2

* 1F * *
TIME 30.00000-001 OTIMEU 21.70966-003 CSGMINI

T 1- 16.046870o0l T 2- 15.00197+001 T

2)

3w

67.55799-003 DTMPC

14.22506.001 T

CI 5) 50.03609-002 ARLXCC( 0) 00.00000.000

4- 13.74381*001 T 5- 13.57756#001 T 10-46.00000#001

ORATE 15.93544-003 OTOTAL 36.72968-003

TIME 35.00000-001 DTIMEU 27.62055-003 CSGMINi

T 1- 17.11316+001 T 2w 16.11112.001 T

ORATE 17.51821-003 QTOTAL 45.11098-003

* * * *
TIME 40.00000-001 DTIMEU 17.45065-003 CSGMIN(

T 1- 18.14217.001 T 2- 17.18384+001 T

Co ORATE 19.20685-003 OTOTAL 54.31173-003

* * * *
TIME 45900000-001 DTIMEU 22.37952-003 CSGMIN(

T 1= 19,15048*001 T 2' 18.23175+ool T

ORATE 20.96310-003 OTOTAL 64.37390-003

TIME 50.00000-001 OTIMEu 26.79780-003 CSGMIN(

T 1- 20.13995+001 T 2- 19,25710*001 T

ORATE 22.79516-003 QTOTAL 75.33565-003

* * * *
TIME 55.00000-001 DTIMEU 16.49958-003 CSGMIN(

T 1- 21,10438+001 T 2- 20,26093+001 T

2) 65.91918-003 DTMPCCi 5) 63.63066-002 ARLXCCi 0) 00.00000*000

3= 15.36148,001 T 4- 14.89520+001 T 5- 14.73360*001 T 10u-46.00000.001

2) 64.42989-003 DTMPCC( 5) 39.18180-002 ARLXCCi 0) 00.00000.000

3- 16.46896.001 T 4. 16.02504+001 T 5- 15.87101.001 T 10a-46.00000*001

2) 63.13855-003 DTMPCCI 5) 48.92322-002 ARLXCCi 0) 00.00000.000

3- 17,54867+001 T 40 17*12540*001 T 5- 16.97841.001 T 10=-46O00000 001

2) 61.97342-003 OTMPCC( 5) 57.10075-002 ARLXCCi 0) 00.00000.000

3- 18.60253+001 T 4- 18,19766.001 T 5- 18.05691+001 T lOu-46.00000#001

2) 60.81596-003 DTMPCCi 5) 34.29108-002 ARLXCC( 0) 00.00000.000

3- 19.63220+001 T 4- 19.24379+001 T 5- 19.10855.001 T 10=-46.00000.001

ORATE 24*71381-003 OTOTAL 87.23433-003

e0

tD

01

C.,



CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER * C00045

SAMPLE PROBLEM 1B

(NRL EDITED)
PAGE 3

TIME 60.00000-001 DTIMEU 20.30452-003 CSGMIN(

T I= 22.04167.001 T 2- 21.23607.001 T

2) 59.90380-003

3- 20.63704.001

DTMPCCi 5) 41.19123-002 ARLXCCi 0) 00.00000.000

T 4- 20.26541+001 T 5- 20.13542.001 T 10=-46.00000-001

ORATE 26.69869-003 OTOTAL 10.01085-002

TIME 65.00000-001 DTIMEU 23.71529-003 CSGMINi

T 1- 22.95402.001 T 2= 22.18220+001 T

ORATE 28.74491-oo3 OTOTAL 11.39935-002

* * * *
TIME 70.00000-001 DTIMEU 26,76422-003 CSGMINi

T 1 23.84313+001 T 2= 23.10159+001 T

QRATE 30.84195-003 OTOTAL 12.89163-002

* * * *
TIME 75.00000-001 DTIMEU 15.76236-003 CSGMINi

T 1= 24,65868+001 T 28 23.96903+001 T

ORATE 32.99067-oo3 OTOTAL 14.49003-002

* * * *
TIME 80.00000-001 DTIMEU 18.23648-003 CSGMINI

T 1- 25.41073+001 T 2= 24.77189.001 T

ORATE 35.10650-003 QTOTAL 16,19507-002

* * * *
TIME 85.00000-001 DTIMEU 20.38997-003 CSGMIN(

T 1- 26.11252.001 T 2 25.52037.001 T

2) 59.06441-003 DTMPCCi 5) 46.48373-002 ARLXCCi 0) 00.00000.000

3- 21.61004+001 T 40 21.25578+001 T 5- 21.13170.001 T 10=-46.00000.001

2) 58.31336-003 DTMPCC( 5) 50.80665-002 ARLXCCi 0) 00.00000.000

3- 22.55327.001 T 4- 22.21426.001 T 5- 22.09534.001 T 10E-46.00000#001 v

2) 57.64421-003 DTMPCC( 5) 28.50700-002 ARLXCCi 0) 00.00000.000 t

3- 23.45586.001 T 4- 23.13714.001 T 5- 23.02475.001 T 10-46900000.o01

2) 57.08125-003 DTMPCC( 5) 30,76391-002 ARLXCCi 0) 00.00000*000

3- 24.29722.001 T 4- 24.00252+001 T 5- 23.89818.001 T 10=-46.00000.o01

2) 56.58755-003 OTMPCCi 5) 32.02967-002 ARLXCCI 0) 00.00000+000

3. 25.08111.001 T 4- 24.80852.001 T 5- 24.71160.001 T lo-46.00000-001

ORATE 37.17370-003 OTOTAL 18.00475-002

I-a

00



CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - C00045 (NRL EDITED)

SAMPLE PROBLEM 18

* * * *
TIME 90.00000-001 OTIMEU 22.28256-003 CSGMIN(

T 1- 26.767154001 T 2Z 26.21810+001 T

ORATE 39.18459-003 OTOTAL 19.91642-002

* * * *
TIME 95.00000-001 DTIMEU 23.95381-003 CSGMINi

T 1- 27.37685,001 T 2- 26,86785+001 T

QRATE 41.13322-003 QTOTAL 21.92709-002

* * * *
TIME 10.00000+000 OTIMEU 25.43501-003 CSGMINI

T 1- 27.94358#001 T 2- 27.47203.001 T

oo ORATE 43.01397-003 OTOTAL 24.03348-002
01

2) 56.15228-003 DTMPCCC 5) 32.58615-002 ARLXCC( 0) 00.00000.000

3- 25,81131+001 T 4- 25.55891,001 T 5- 25.46874+001 T 10-46.00000,001

2) 55.76696-003 OTMPCCi 5) 32.59281-002 ARLXCCI 0) 00.00000+000

3- 26*49106.001 T 4- 26.25722.001 T 5- 26.17324.001 T lOm-46.00000#001

2) 55.42483-003 DTMPCCI 5) 32,16639-002 ARLXCC( 0) 00.00000*000

3- 27.12314+001 T 4- 26.90650#001 T 5- 26.828244001 T 1O-46.00000#001 
LTJ

LT

END OF DATA

PAGE



JOB MESSAGES

MT12

BLMT14
MTl4

BLMT12
MT12

JOB9004645, 600,899RCC
NEED 09 * MT VfCINDA MASTER)9EDNO1,RLmOlDATEw

NEED 09 a MT siCINDA MASTER) EDwOlRLwO1,DATE-
NEED 09 * MT wiCINDA MASTER) EDwOl9RLw0l9DATEw
NEED 09 a MT w(CINDA MASTER) ,EDxORLwO1,DATEu
WHICH MT HAS L.Ue 40

WHICH MT HAS LAUD 22

RELEASED 9-MT13NiCINDA MASTER) ,EDBO1,RL-O1DATE-o52373,RCs999
RELEASED 22=MT120 (UNLABELED)
RELEASED 40.MT14=IUNLABELED)

LtJ

I~i

0)



SEQUENCE NUMBER 004645 TERMINATED Al
MMMMMM MMMMMMMMM MMMMMMMMMMMMMMMMMM M
MMMMMMMMMNMMMMMMMMMMMMMMMMMMMMMMMMMM

192046 ELAPSED TIME. 00 MRS. 04 MIN. 31 SEC. OR 271432 MILLISECONDS
iMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM M MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMI
IMMMMMMMMMMMMMMMMMMMMMM4MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMI

4MMMMMMMMMMMMMMMMMM
4MMMMMMMMMMMMMMMMMMM

THE TOTAL NUMBER OF LINES PRINTED FOR THIS JOB WAS

00

694

z

r
-210

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm



MARY E. GEALY

The stored original problem of sample 1B is used to illustrate the RECALL option.
The initial data will be taken and given a new TIMEND of 5.0 min, as well as a negative
heating rate.

The first card in the problem data deck is

1

RECALL

13
4,

22

STORI 0

The title block is changed to

8

BCD 3INTIAL PARAMETERS
BCD 3SAMPLE PROBLEM IB---RECALL
END

Since there are no temperature or conductor data changes, the nodal and conductor
blocks are blank.

8

BCD 3NODE DATA
END
BCD 3CONDUCTOR DATA
END

The change in TIMEND produces the following constants block:

8

BCD 3CONSTANTS DATA
TIMEND,5.0

END

Array 4 is changed to induce a negative heating rate.

8

BCD 3ARRAY DATA
4 ,0.,-3.,3.,-4.,7.,-4.,iO.,-3.,END $-Q VS TIME

END

Since no operations block changes are allowed in parameter runs, the data deck is ter-
minated by

8

BCD 3END OF DATA

188



NRL REPORT 7656

The binary program tape (processor) was stored during the original run, so recom-
pilation of the constructed subroutines is not necessary. Since the STOREP calls are still
in the processor, the original and final data of this RECALL problem are stored on drum
unit 22. The unit was not equipped in this example, however. See Section VII for the
correct deck setup.

The processed problem printouts of the second run follow.

189



SEQUENCE 04060 STARTED PRINTING 08O/08/73 AT 192112 ON LPOI
DRUM SCOPE 2.1 COMPUTER TWO. MAXI DEMAND is 570008 VERSION 004 10/31/72
SEQUENCE NUMBER 004060 STARTED AT DIME 191527 DATED 08/08/73
JOB(5) ,40800800,898RCC,10
EQUIPO90iCINDA MASTER9191*999),ROtH1,A
EQUIPq21**9ROqHIwDA
EQUIP,40**tROHI#DA
**BINARY DECK-*G

BANK, (0) ,/4/
LOAD, 09
RUNllOOo

I-k~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~i
0o T



PROGRAM NAMES
1 77672 SEARCH 00105 1 77603 STFFB 00067 1 76026 GENLNK 00540 1 74614 SPLIT 01026
1 74272 SKIP 00322 1 ;2W17 CODERD 01353 1 71712 PSUEDO 00661 1 71627 ORMIN 00063
1 71417 PACK43 00210 1 71345 BIT 00052 1 71051 PRESUB 00274 1 70731 WRTBLK 00120
1 70673 WRTSCOPE 00036 1 65267 CINDA4 03404 1 62747 BLKCRD 01170 0 71134 DATARD 06643
1 62141 PREPRO 00605 0 60445 INITAL 10467 1 57571 FINAL 02350 1 57335 ALLOCs 00234
0 56177 IOH. 02246 1 17603 Q7QLODLC 00032 0 54622 IOP. 01355 1 57072 080ERROR 00211
1 57005 BFIe 00065 1 56740 ENC. 00045 1 56705 DEC. 00033 0 54570 080IFUNI 00032
0 54544 EFT. 00024 0 54472 SLI. 00052 0 54430 OBtNOUT4 00042 0 53654 IOB, 00554
0 53562 BSP. 00072 0 53527 Q8QIFIOC 00033 0 53471 STW, 00036 0 53424 TSH. 00045
0 53407 REW, 00015 0 52764 IOS, 00423 0 52604 Q1 8REINT 00160 0 52420 OlOSTORE 00164
0 52342 08QENTRY 00056

PROGRAM EXTENS.
NONE

LABELED COMMON
1 76566 CRDBLK 01015 1 76014 TAPE 00012 1 75775 DATA 00017 1 75657 SUBLST 00116
1 75654 OLOGIC 00003 1 75642 PLOGIC 00012 1 72573 LO0IC 00124 1 64613 NARRAY 00454
1 64137 DIMARY 00454 1 62746 WJS 00001

NUMBERED COMMON
0 24550 4 17500 1 00001 1 17500 1 17501 3 17500 1 37201 2 17500 z

ENTRY POINTS r
0 77777 SENTRY 1 77675 SEARCH 0 52342 088DICT. 1 77607 STFFB o
1 76214 GENLNK 0 52420 Q3Q10040 0 52655 03800040 0 53303 THENDo t

CO 1 63176 BLKCRD 0 53412 REW, 0 53430 TSH. 0 534T5 STH. 0
I-k 0 53275 QNSINGLs 1 74656 SPLIT 1 74275 SKTP 0 53536 OBOIFEOF :

0 53565 BSP9 0 53457 TSB. 0 53671 STB. 0 54446 QBOINP4
1 73077 CODERD 0 72636 DATARD 0 54500 SL#. 0 54472 SLI. -
1 71760 PSUEDO 1 71422 PACK43 1 71632 ORMIN 0 54547 EFT, CD

1 71345 BIT 1 71)10 PRESUB 1 66371 CINDA4 1070701 WRTCOPE
0 54573 08QIFUNI 1 70764 WRTBLK 1 56710 DEC. 1 56743 ENC.
1 57020 BFO. 1 623l4 PREPRO 0 52346 086ENTRY 0 67407 INITAL
1 60643 FINAL 1 57974 Q80ERROR 0 52343 EXT 0 54430 QBQOUT4
0 54625 IOP. 0 53e37 QBQHIST. 1 57303 07ILODLC 0 53004 IOS,
0 53307 IOR 0 5622j IOH. 0 60320 *TEERR 0 56177 BCDBUF.
0 52764 IOE. 0 53156 QSQCHAIN 0 53300 QN0OUBL. 0 55644 ETAB.
1 57473 ALLOC, 1 57543 RETUAN. 1 57447 BUSY 1 57456 IRETURN.
1 57537 ALLOCIN. 0 60913 ELD. 060277 .RIPCNT. 1 57072 OBERRORN
1 57073 QSNOTRAC 1 573o6 QBQERSET 1 57010 OFT. 0 540le ELB.
O 53532 Q8QIFIOC 0 52604 QiQOoloo 0 52604 01101100 0 52623 01002100
0 52627 Q1Qo31oo 0 52433 01004100 0 52637 01005100 0 52607 0300oo40
0 52664 03Q01040 0 52415 Q3Qoil4O 0 52723 03002o40 0 52673 300O2140
0 52732 030o3040 0 S2901 03003140 0 52741 03104040 o 52707 03004140
0 52750 Q3005040 0 52715 03QoS14 0 0 525o6 Qilloolo 0 52506 01010020
o 52454 QlQ10030 0 5252? 0lQlloo 0 52501 01010120 0 52460 Q1010130
0 52535 Q0110200 0 52663 0Q110210 0 52463 01110230 0 52527 01010300
0 52512 QlQ10310 0 5201i 01010320 0 52522 01910400 0 52515 G10o1410
o 52474 1Q010420 0 52474 Q0Q10430 0 52420 03910140 0 52420 Q3010240
0 52420 Q3Q10340 0 52420 Q10440

EXECUTION STARTED AT 1916 -34



MARY E. GEALY

C.

In

II

alm
0
0.

-J
-J
aI

192



BCD 3INITIAL PARAMETERS
BCD 3SAMPLE 18---RECALL
END
BCD 3NODE DATA
END
BCD 3CONDUCTOR DATA
END
BCD 3CONSTANTS DATA

TI MEND, 5.
END
BCD 3ARRAY DATA

4,0'.'3,,3*,4*47.9,4.,1B.,-3.,ENO S -0 VS TIME
END

LIBRARY,09vLCINDA
LOAD,40
RUN,5,2500

Itj

C

01
CD

Co



PROGRAM NAMES
1 77744 LINKO
1 77140 OUTCAL
1 76527 BIT
1 73562 ALLOC.
1 73131 Q8QXMODF
1 72446 SLI.
1 71412 QlOREINT
1 6702l TPRINT
1 66277 VARGSM
1 62622 INPUTT

PROGRAM EXTENS.
NONE

LABELED COMMON
1 77720 TITLE
1 77671 COND
1 77533 FIXCON
1 77341 LOGIC

NUMBERED COMMON
NONE

ENTRY POINTS
0 77777 SENTRY
1 62360 Q8QODICTe
1 65115 CNFRWD
1 66431 DIDEGI
1 77143 OUTCAL
1 71042 Q8QHIST.
1 71575 TSB.
1 71300 QNSINGL.
1 72454 SLO.
1 73215 TOPL1N
1 73570 RETURN.
1 74227 Q7QLODLC
1 70767 IOE.
1 76614 LAGRAN
1 77077 Q8QLODA
1 74016 Q0ERRORN
1 73134 Q8QXMODF
1 71431 Q1002100
1 71415 Q3Q00140
1 71501 Q3QO2140
1 71515 03G04140
1 70434 ETAB.
1 62472 01010030
1 62553 QG10O200
1 62530 01Ql0310
1 62512 01010420
1 62436 03Q10340

EXECUTION STARTED AT

00033
00020
00052
0 0234
00025
00052
00160
00155
00116
00551

00024
00006
00062
00004

1 77912
1 77103
1 74261
1 73365
1 73043
1 7204
1 70V67
1 6674i
1 66221
1 62636

EXECTN
SKPLIN
IOH.
aRTLO8
DI1I1M
Q8INOUT4

QINTEG
VARCSM
QlOSTORE

1 77712 TEMP
1 77663 PCS
1 77521 DIMENS

1 77747
1 62637
1 7720s
1 77)63
1 67842
1 71306
1 72552
1 72523
1 72542
1 73325
1 73674
1 71503
1 74505
1 77061
1 76075
1 7401?
1 71730
1 71435
1 71h7Z
1 71540
1 71556
1 67306
1 62545
1 62501
1 62S1 7
1 6251l
1 62636

1921 -20

00027
00035
02246
00175
00066
00042
00423
00060
00056
00164

00006
00006
00012

LINKO
INPUTT
VARBLI
VARBL2
TPRINT
THEND.
STH.
REWM
UNPAK
STNDRD
BUSY.
ONDOUBLo
LOH.
0BLOADA
ELD.
OSNOTRAC
EL8.
01003100
03Q01040
03003040
03005040
PRINT
01Q1010O
OQ101210
01010320
01010430
03010440

1 77202
1 77061
1 74227
1 73244
1 72535
1 72346
1 67412
1 66643
1 65061
1 62360

VARSLI
0SILOADA
Q7QLODLC
STNORD
UNPAK
STm.
IoP.
RDTNQS
CNWRWD
0! ENTRY

00110
00022
00032
00121
00306
00036
01355
00076
01140
00056

1 77704 CAP 00006
1 77657 KONST 00004
1 77513 PRWT 00006

1 62364
1 77315
1 66224
1 66646
1 67315
1 71463
1 72422
1 71607
1 73046
1 73411
1 73703
1 71007
1 74261
1 77112
1 76361
1 74132
1 71412
1 71441
1 71423
1 71507
1 71523
1 62524
1 62517
1 62501
1 62540
1 62436

080ENTRY
EXECTN
VARCSM
RDTNOS
PRNTL
03200040
080INP4
ST$*
DI1IWM
WRTL08
IRETURN,
IOS.
BCOBUF.
SKPLIN
.RRPCNT.
08SERSET
01000100
01104100
03601140
03003140
03005140
01010010
0l1lO20
01210230
01310400
03910140

1 77160
1 76601
1T4016
1 73156
1 72520
1 T1572
1 67176
1 66415
1 63373

VARBL2
LAGRAN
Q8QERROR
TOPLIN
REW.
108.
PRINT
D1DEGI
STOREP

1 77677 SOURCE
1 77615 ARRAY
1 77341 XSPACE

1 62436
1 64216
1 66302
1 66744
1 67415
1 62361
1 72446
1 72404
1 73140
1 73720
1 74020
1 71312
1 76527
.1 77102
1 76402
1 73764
1 71412
1 71445
1 71531
1 71547
1 71161
1 62524
1 62476
1 62545
1 62533
1 62436

00022
00260
00211
00066
00015
00554
00214
00226
01466

00005
00042
00146

03010040
STOREP
VARGSM
OINTEG
lOP.
EXIT
SLI.
QSQOUT4
XMODF
ALLOCe
080ERROR
IOR.
BIT
080LDCON
. TSERR,
ALLOCIN.
01001100
01005100
03002040
03004040
GBOCHAIN
01010020
01010130
01010300
01010410
03010240



NRL REPORT 7656

J
hi

a
ato

41

-i0
I-.

0

a

195



CHRYSLER IMPROVED NUMERICAL DIFFERENCING ANALYZER - 600045

SAMPLE 1B---RECALL

TIME 00.000004000 DTIMEU 00,00000.000 CSGMIN(

T 1t 80.000004000 T 2= 80.00000+000 T

QRATE 009000004000 QTOTAL 00.00000+000

TIME 50.00000-002 DTIMEU 23.69129-003 CSGMIN(

T 1 53.68598+000 T 2= 65*16701+000 T

PAGE 1
iNRL EDITED)

1) 79.36899-003 DTMPCG( 1) 00.000004000 ARLXCCi 0) 00.00000o 000

3a 80.00000+000 T 4. 80.00000+000 T 5= 80.00000*000 T 10-46.00000+001

5) T7963843-003 DTMPCCi 1) 70.43746-002 ARLXCCi 0) 00.00000*000

3s 72.30302+000 T 4. 76,05114+000 T 5- 77.17596.000 T 103-46.00000+001

ORATE 95.74068-004 OTOTAL 48.74938-004

* * * *
TIME 10.00000-001 DTIMEU 22.30141-003 CSGMIN(

T 1 40.076904000 T 2= 52.92449+000 T

to
Q GRATE 88.11568-004 QTOTAL 94967770-004

* * * *
TIME 15,00000-001 DTIMEU 20.12225-003 CSGMIN(

T 1I 26.75812+000 T 2a 40.701734000 T

ORATE 79.65650-004 OTOTAL 13.64945-003

TIME 20.00000-001 DTIMEU 37.05690-003 CSGMINi

T 1- 12.72987+000 T 2z 27.81440.000 T

5) 80.33910-003 DTMPCC( 1) 58.36632-002 ARLXCC( 0)

3- 61.597244000 T 6w 66.58331+000 T 5- 68.18559.000

oo~ooooo'oooD

T 10=-46.00000*001
mT

5) 81.18391-003 DTMPCC( 1) 54.53454-002 ARLXCC( 0) 00.00000*000

3- 50.19081+000 T 4- 55.69574.000 T 5- 57.47918+000 T 103-46.00000.001

5) 82.09882-003 DTMPCCi 1) 10.68712-001 ARLXCC( 0) 00.000004000

3- 38.062794000 T *= 44.00820+000 T 5- 45.93819+000 T 103-46.00000+001

ORATE 71933532-004 OTOTAL 17*40686-003

* * * *
TIME 25.00000-001 DTIMEU 34.47240-003 CSGMIN(

T 13-21.91916-001 T 2= 14,127544000 T

5) 83.16484-003

3m 25.18076+000

DTMPCC( 1) 10.58945-001 ARLXCCi 0) 00.00000+000

T 4- 31.58364+000 T 5- 33.66399+000 T 10-46.00000+001

ORATE 63.20805-004 QTOTAL 20075598-003

0
m

t"



CHRYSLER IMPROVBD NUMERICAL DIFFERENCING ANALYZER - C00045

SAMPLE 18---RECALL

* * * *
TIME 30.00000-001 DTIMEU 31.59878-003 CSGMINC

T 1x-18.10093#000 T 2--41.82387-002 T

iNRL EDITED)
PAGE 2

5) 84.36528-003 DTMPCBC 1) 10,33833-001 ARLXCC( 0) 00.00000.000

3- 11.51046.000 T 4- 18.40611+000 T 5 20.64749*000 T 10=-46.00000.001

QRATE 55*41477-004 QTOTAL 03370579-003

TIME 35.00000-001 DTIMEU R8.27367-903 CSGMINC

T 1=-33998462+000 T 2a=15.48183+000 T

ORATE 48.03297-004 OTOTAL 26.27684-003

* * . *
TIME 40,00000-001 DTIMEU 24.59518-003 CSGMIN(

T 1*-49,934760ooo T 2=-30.57536*000 T

QRATE 41.24798-004 QTOTAL 28.49437-003

TIME 45,00000-001 DTIMEU 41.56360-003 CSGMIN(

T 13-66.25569+000 T 2P-46.01367.000 T

QRATE 35.18335-004 OTOTAL 30.39069-003

* * * *
TIME 50.O0OOO-00l OTIMEU 37,54882-003 CSGMIN(

T 1-83.02761+000 T 2=-61,79634+000 T

5) 85,71831-003

3m-28.20476-001

5) 87.21536-003 DTMPCC( 1) 79.26287-002 ARLXCC( 0)

3E-17.441090ooo T $a-98.14308-001 T 5=-73.24506-00i

5) 88.78902-003

3w-32.33825+000

5) 90.59414-003

3.-47.52776.000

OTMPCG( 1) 13,73111-001 ARLXCCi 0)

T in-24.41424.000 T 5=-21.82787.000

DTMPCC( 1) 12.76585-001 ARLXCC( 0)

T 6m-399283230000 T 53-36.59381+000

z
00.00000.000 ~

T 100-46.00000*o01 W
Lt4
Ct

00.00000*000

T 10u-46.00000+001

cn

01

00. 00000.000

T 10m-46.00000#001

ORATE 29.72409-004 QTOTAL 31.99957-003

END OF DATA

I-k

DTMPCG( 1) 89,41939-002 ARLXCCi 0) 00.00000.000

T 4- 45.04702-001 T 5- 68.93648-001 T 10=-46.00000,001



JOB MESSAGES
JOB9004060, 600,89IRCC

NEED 09 * MT m(CINUA MASTER)EDmOI9RLmOl1OATEm
WHICH MT HAS LAUD 21

BLMT16
MT14 GO
MT14
BL:MT16
BL MT 6
BLMT16

WHICH MT HAS LoU. 40
MT15

RELEASED 9wMT123(CiNDA MASTER),ED-olRLsOlDATEsO52373,MCu999
RELEASED 2l1MTI4wiUNLABELED)
RELEASED 4O-MTl5E(UNLABELED)

co L
I-kF



2 x x NRL REPORT 7656

:E x x

21

222xx2

r r x
U) x x

222222222222

:222

x x xNx x x

222222

r) xxx 

222x

wxxx

x X: x
-i x: x X

222

cu x x X

en x x x
.D :x x 

ou x x X a
x x x: 

222

x x x u

m :E 2 : Xn

C4T : x 

222

222

zm

222

~o x :x X

222

tD X X x

T X X : 

O 22

C2 x x X r 19

2222 c02220222
xx 22

m x Xx 222.4222.4222.422 (2222 222 x 
0222 U.022 2 

N 222X 3
WE 222

Al 222m 222 222 (5222
0222x 

222xx *222 U0222
Ed 222flx222x 

222xxx -
WE 222z
Al 222

222X e.222 a
2222x 

222 U2222 xx 
222 

*222xx 10222xx 
222x

-222 U
an 222x 
Q 5222

1222 c222 Xx 
0222 m0222 *222 N :

m 222x Ed2222222-.J4 122-9-222S.4 X222 In-19



MARY E. GEALY

SAMPLE NO. 1B (Continued)

TSAVE AND PLOT RUN

This run and the plots are similar to the TSAVE run of sample 1A. The following
data were used.

1 5 12 22

CINDA SAMPLE PROBLEM IB
0.00 10.00

* 10*
CINDA SAME PROBLEM IB

0.00 10.00
+ 10*
EOF

32 42

80.00 280.00

-470.00 -450. 00

The printed output from the plot run are as follows.

CINDA SAMPLE PROBLEM 1B

X-AXIS LIMITS -- 0.00+000# 1.00o+o1j Y-AXIS LIMITS -- 8.00.001, 2;8O002O

ALL NODES BUT THE FOLLOWING WILL BE PLOTTED --
10l

CINDA SAMPLE PROBLEM 1B

X-AXIS LIMITS -- 0.00*000

THE FOLLOWING NODES WILL BE
10*

I .00o*00 I

PLOTTED -B-

Y-AXIS LIMITS -- -4,704002,-4;504002

The plots are given in Fig. B2.

200



rIlrlc 20221 LL I22 FMULI' 1U INUULF nTIn 22221 FL I22 FMUI 1U 1.12FF

1 2

a- a 

2 2 /o

d_ /a/c

a- a-fl l 

0-~IM -- MIiTE i

0(a (b)r

Fig. B2-Time vs temperature plots for CINDA Sample Problem 1B. Plots are shown in the order in which they are plotted. Time and
temperature values will be in the E format, rather than in the F format as shown.

rTNinn SRMPIF PRQRI FM 1Rr T ~nD SRMPI F PRQRI FM 1 R NlnnF Kinm7



MARY E. GEALY

L-J Zr
LD
CD

N

I

LUi
LU
LE

LU

ui
LU

LnCE
LU

Lu

C42 a, tC'2 7?U a2C CClU' oc 4;

-4-- ~IliI

LUi
ED
LULU

rlU

L:
LU

LU
LU

LU

-J

LU

l

CD

LUi
LU

LU

C-)

8

'a

8

0

8

.8

.8
8

80.8
A '-�� N
64 Wa�

a-- N
8

8

8

8 .8

ON
8
-�

.80
8 N

-�

8

8

z �
-4

8

8 ON

8
-'a

8

8

8 80

8

X CC cv, TS¶ l

.4 dW U

202

I

I

cl, �91 CO -C,�T BOOST co-ki (LI



NRL REPORT 7656

I II II
alv)) aS4 '? acc b) a £VU a'I C0 I cUvW

A -- dk0

O "Ch lW I I
,X -IIf C W W a)-IC

8 U2r Y

4* N

e Z D k

8 w, Z
_ G Q Cl d'd4 .

8
-'a I 

acq cod2 ~ ~~~~~ rX4Q 
es l Ce 

- A s s ° D U

203

LLJ UL)
LD

iLU

LL
w
-J

LU

L
G-
bi
a-
L_

Cr

Cr
Lu

I




